
 Open
 MASTER’S THESIS REPORT 1 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Modeling of Real-Time Systems in UML with
Rational Rose and Rose Real-Time based
on RUP

Abstract

In software development, using UML for modeling of real-time systems is a fairly new
area. There are a lot of different theories and reports in this area and UML is in a
development phase when it comes to modeling of real-time systems.

This report provides a summary of how and why UML and UML-RT can be used for
modeling of real-time systems. It also includes a summary of the advantages and
disadvantages of Rational Rose and Rose-RT concerning modeling of real-time
systems.

This report also provides modifications that can be done to RUP to make the process
better suited for development of real-time systems. This includes among others the
use of state machines to capture the concurrency within and among Use Cases.

Sammanfattning

Att använda UML för modellering av real-tidssystem är ett relativt nytt område. Det
finns flera olika teorier och rapporter som tar upp detta och UML är i en utvecklingsfas
när det kommer till modellering av realtids system.

Denna rapport ger en sammanfattning av hur och varför UML och UML-RT kan
användas för att modellera real-tidssystem. Den inkluderar också en sammanställning
av de fördelar och nackdelar som verktygen Rational Rose och Rose-RT har när det
gäller modellering av real-tidssystem.

Denna rapport tillhandahåller också förändringar som kan göras på RUP för att göra
processen bättre lämpad för modellering av real-tidssystem. Detta inkluderar bland
annat användandet av tillståndsmaskiner för att fånga parallellitet inom och mellan
Användningsfall.

 Open
 MASTER’S THESIS REPORT 2 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

 Open
 MASTER’S THESIS REPORT 3 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Acknowledgements

We would like to thank all employees at Ericsson Mobile Data Design
AB (ERV) for their support and help during this thesis work at their site
in Gothenburg, Sweden.

We would also like to thank our supervisor Jan Jonsson, Department
of Computer Engineering, Chalmers University of Technology,
Gothenburg, Sweden.

 Open
 MASTER’S THESIS REPORT 4 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

 Open
 MASTER’S THESIS REPORT 5 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Table of Contents

1 INTRODUCTION..7

1.1 PURPOSE...7
1.2 SCOPE AND LIMITATIONS ..8
1.3 OUTLINE ...8

2 THE BASICS..10

2.1 REAL-TIME ASPECTS...10
2.1.1 Time constraints..10
2.1.2 Concurrency..10
2.1.3 Interaction...11
2.1.4 Non-functional requirements ..12
2.1.5 Distribution ...13
2.1.6 Implementation constraints...13

2.2 STANDARD UML..14
2.2.1 Use Case diagrams ...14
2.2.2 Sequence diagrams ...15
2.2.3 Collaboration diagrams..16
2.2.4 Class diagrams..17
2.2.5 Object diagrams..18
2.2.6 Statechart diagrams ..18
2.2.7 Activity diagrams ..19
2.2.8 Component diagrams ..20
2.2.9 Deployment diagrams ...21

2.3 UML FOR REAL-TIME ...21
2.3.1 Capsules..21
2.3.2 Ports and Connectors..22
2.3.3 Protocols ...23

3 DEFINITION OF OUR EVALUATION MODEL..25

3.1 THE GPRS-SYSTEM..25
3.2 THE GGSN...26

3.2.1 The GGSN-Light ...26

4 MODELING ...29

4.1 REQUIREMENTS WORKFLOW..29
4.1.1 Use Case modeling..29

4.1.1.1 Use Case Diagrams ...30
4.1.1.2 Sequence Diagrams...32
4.1.1.3 Statechart and Activity diagrams ..34

4.2 ANALYSIS & DESIGN WORKFLOW...36
4.2.1 Supplementing Use Case descriptions ..37

4.2.1.1 Sequence diagrams for supplementary Use Case descriptions..37
4.2.1.2 Statechart and Activity diagrams for supplementary Use Case descriptions...41

4.2.2 Architectural analysis, Analysis classes/roles and Use Case realizations..46
4.2.2.1 Analysis classes ..46
4.2.2.2 Analysis roles..47
4.2.2.3 Use Case realizations ..48

4.2.3 Design Elements, Use Case Design, Distribution and Run-Time Architecture...53
4.2.3.1 Designing with Active classes...53
4.2.3.2 Designing with Capsules...54
4.2.3.3 Object creation and destruction ..56

 Open
 MASTER’S THESIS REPORT 6 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

4.2.3.4 Thread synchronization...57
4.2.3.5 Scheduling ..59
4.2.3.6 Distribution...59

4.3 IMPLEMENTATION WORKFLOW..59
4.4 TEST WORKFLOW..60

5 HOW WILL RUP BE AFFECTED..61

5.1 TRACK 1: DEEP ANALY SIS AND DESIGN OF NON-REAL-TIME COMPONENTS...63
5.2 TRACK 2: DEEP ANALY SIS AND DESIGN OF REAL-TIME COMPONENTS...65
5.3 TRACK 3: ANALYZE USE CASE WITH STATE MACHINES AND DESIGN OF REAL-TIME COMPONENTS............................68
5.4 MODIFIED AND ADDED ACTIVITIES AND ARTIFACTS...70

5.4.1 The Requirements Workflow ...70
5.4.2 The Analysis and Design Workflow...70

6 SUMMARY AND CONCLUSIONS...74

6.1 UML AND UML-RT FOR MODELING OF REAL-TIME SYSTEMS..74
6.2 ADVANTAGES AND DISADVANTAGES OF RATIONAL ROSE AND ROSE-RT ...75
6.3 MODIFICATIONS TO RUP ..76

7 DISCUSSION AND FUTURE WORK...77

7.1 REFLECTIONS ON OUR METHODOLOGY AND WORK..77
7.2 TECHNICAL ABILITIES OF DIFFERENT TOOLS..78
7.3 CODE GENERATION..79
7.4 VERIFICATION OF OCL CONSTRAINTS...79
7.5 UML IN THE FUTURE..79

8 REFERENCES...80

 Open
 MASTER’S THESIS REPORT 7 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

1 INTRODUCTION

Ericsson Mobile Data Design AB (ERV) is moving from a structured
modeling1 approach to an object-oriented modeling process when
designing software systems. This includes the introduction of UML
(Unified Modeling Language) and RUP (Rational Unified Process).
When using RUP, software-development projects are guided through
the different phases of the development process.

RUP, however, has some limitations when it comes to modeling of
real-time systems. In the design phase, for example, the projects have
to choose between “design of real-time components” (using Rational
Rose-RT2 or some other tool) or “design of non real-time components”
(e.g. using Rational Rose). But RUP supports no guidelines on how to
make this choice, nor does it state the benefits and the consequences
of the two different design methods.

1.1 PURPOSE

The purpose of this thesis work is to investigate how real-time systems
efficiently can be modeled using UML3, with Rational Rose and with
Rational Rose-RT based on RUP. This includes an examination of the
advantages and disadvantages of Capsules and Protocols, concepts in
UML-RT (introduced in chapter 2.3) used by Rational Rose-RT.

Design Real-Time
Components

[Non-Real-Time] [Real-Time]

Design Components

Analyze Behavior

Refine Architecture

[Early Elaboration
Iteration]

Define a Candidate
Architecture

Figure 1. The analysis and design process used in the GSN-projects today.

1 Structured modeling focuses on functions/methods instead of objects.
2 Rational Rose for Real-Time.
3 When referring to the UML standard in this document, we intend version 1.3.

 Open
 MASTER’S THESIS REPORT 8 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

It further includes an illustration of important issues that should be
considered during modeling of real-time systems and when, during the
development process, these issues should be taken under
consideration.

The goal is to find accurate and unambiguous modeling methods that
can be used at ERV when developing systems with real-time
requirements and to present guidelines to help ERV in the choice
between the activities “Design Components” and “Design Real-Time
Components” defined in RUP (see Figure 1).

1.2 SCOPE AND LIMITATIONS

This report is not intended to serve as a tutorial for modeling in
Rational Rose and Rose-RT. It will, however, show important
possibilities and scarcities of the above mentioned tools when it comes
to modeling of real-time requirements and systems with real-time
properties.

The thesis work focuses on modeling methodology. We will neither
consider the ability of Rational Rose or Rose-RT to support and
integrate with other software development tools, nor other “technical”
aspects as the support for round-trip4, reverse engineering5,
programming languages, API’s6 and so on. Code generation and test
will only be discussed superficially. We will focus on the requirement,
analysis and design activities in the modeling process. No detailed
description of RUP will be provided.

The system used as an evaluation and work model during this thesis
work is based on a support node from the GPRS7 standard, namely the
GGSN8. Modifications, simplifications and additions have been made
to the original GGSN to fulfill our demands on an evaluation/work
model. The design of the GGSN in this thesis work is not intended to
be used as a base for ERV in the development of there GGSN.

It is assumed that the reader is familiar with real-time systems and the
problems involved in the design of real-time systems. The reader
should also have basic knowledge of UML and concepts relating to
object-oriented design.

1.3 OUTLINE

This report is the result of our studies on how real-time requirements
can be modeled with UML.

4 The capability to incorporate modifications, done in the code, to the model
5 The capability to generate models from existing code
6 Application Programming Interface
7 General Packet Radio Service
8 Gateway GPRS Support Node

 Open
 MASTER’S THESIS REPORT 9 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

The first chapter gives an introduction to the thesis work. Here the
scoop and the limitations are stated.

Chapter 2, The Basics, is divided into three parts. The first part defines
real-time properties that are significant to real-time systems. The
second part gives a brief introduction to UML and the UML diagrams
that are used in this report. Readers already familiar with the UML
diagrams can skip this part. The last part introduces Capsules, Ports
and Protocols, concepts added to UML to form UML-RT.

Chapter 3 presents the system that is used during our modeling. It
includes a brief description of the GPRS-system (chapter 3.1) and our
GGSN node (chapter 3.2).

Chapter 4, Modeling, shows how UML and UML-RT can be used to
model systems with real-time requirements and how Rational Rose and
Rose-RT support these methods. If you want to find ways to change
your modeling guidelines and discover what opportunities UML and
UML-RT can offer for modeling of real-time system, read this chapter!

Chapter 5 describes how RUP can be improved with new or modified
artifacts and guards in the requirements, analysis, and design
workflows. The tracks in the analysis and design workflow have been
extended with new guards and guidelines on how to choose between
the tracks and a new track, adjusted after the abilities and limitations of
UML-RT and Rational Rose-RT, have been added. If you are
interested in development processes, especially RUP, you should read
this chapter!

Chapter 6 summarizes our work and conclusions and Chapter 7
presents our experiences from this work and different issues that are
still unsolved and how ERV can move forward towards new knowledge.

 Open
 MASTER’S THESIS REPORT 10 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

2 THE BASICS

This chapter provides a brief introduction to real-time systems, different
UML diagrams and the concepts of Capsules, Protocols and Ports
introduced in UML-RT.

2.1 REAL-TIME ASPECTS

It is hard to find an unambiguous definition of real-time systems among
today’s technical literature. Most authors, however, seem to agree that
real-time systems can be characterized by the following properties:

• Time constraints

• Concurrency

• Interaction

• Non-functional requirements

• Distribution

• Implementation constraints

2.1.1 Time constraints

Time is a critical aspect of real-time systems. The system performance
must both be correct and timely. Time constraints arise from the laws
of nature, limitations in hardware components, mathematical theory
(e.g. the minimal speed of sampling) and artificial requirements (e.g.
harmonicity and exclusion) [8] [9].

Time constraints are commonly divided into hard and soft time
constraints. In systems with hard time constraints, missing a single
deadline will constitute an unacceptable failure. On the other hand, in
systems with soft time constraints, missing a deadline occasionally is
acceptable.

Important modeling concerns of timeliness are modeling execution
time, deadlines, arrival patterns, synchronization patterns, and time
sources [19].

2.1.2 Concurrency

Concurrency is a feature of the real world. At any given time, multiple
simultaneous activities can take place. Embedded in this world are
real-time systems that often must react to these activities. This requires
the real-time systems to be able to respond concurrently as well.

One definition of a concurrent system is that it is a system with two or
more simultaneous threads of control (processes/tasks) that
dynamically depend on each other in order to fulfill their individual
objectives [6]. A system can be pseudo-concurrent, which means that

 Open
 MASTER’S THESIS REPORT 11 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

the different threads of control execute on the same processor. The
real-time operating system schedules the threads to share the
processor in a way that gives the impression of concurrency. In a “truly”
concurrent system each thread of control executes on its own
processor.

The definitions of tasks, threads and processes alter in different
literature. When we talk about threads, or tasks, we mean threads that
can coexist within an enclosing data space, but with weak
encapsulation. When the thread has a stronger encapsulation and use
different data address space and must resort to expensive messaging
to communicate data among themselves, we will refer to them as
processes.

Modeling issues concerning concurrency are scheduling of the threads
of control, arrival patterns of incoming events, synchronization of
threads, and the control of access to shared resources.

2.1.3 Interaction

Many difficulties in dealing with concurrent systems arise in the
interaction between threads of control. The basic forms of interaction
are synchronization and communication.

Synchronization does not include any exchange of information. Its
purpose is, among others, to ensure proper interaction, to adjust the
execution timing of threads in accordance to other threads and to avoid
deadlocks, starvation and incorrect shared access to resources.
Concepts used for synchronization of threads are among others
semaphores, monitors and critical regions [16]. Scheduling is also a
kind of means for synchronizing threads.

Communication on the other hand includes some kind of information
exchange between different threads of control. The communication can
be either synchronous or asynchronous.

Some of the most common communication mechanisms are [16]:

• Operation calls: An ordinary operation call is a synchronous
communication technique. The object that originates the
communication calls an operation on another object and then waits
for the operation to finish and to return a result before it proceeds.

• Rendezvous: For this synchronous communication mechanism, a
number of rendezvous points are specified in the execution of two
threads. When the first thread reaches a rendezvous point it stops
and waits for the second thread to reach the corresponding point.
When they are both at the rendezvous point they exchange
information and then continue to execute in parallel.

• Message queues/Mailboxes: An asynchronous communication
technique where the sender places a message in a defined

 Open
 MASTER’S THESIS REPORT 12 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

mailbox and then continues executing. The receiver checks the
mailbox when for incoming messages whenever it is ready to
handle them.

• Shared memory: A technique by which a block of memory is
reserved for communication, where a number of objects can write
and read information. The block must be guarded by a
synchronization technique so that object cannot read and/or write
the information at the same time.

• Remote procedure calls (RPCs): This is both a communication and
a synchronization mechanism, that allows distribution of threads to
separate processors in a network and also allows threads to be
written in different languages. The calling object furthers an
operation call request to a RPC library that finds the remote object
in the network and sends the request to it. The receiving side
translates the request from the universal format that it is sent by
and makes the call. The result is returned in a similar manner.

The communication between objects is modeled using events, signals
and messages; the actual implementation techniques are not chosen
until the design phase.

2.1.4 Non-functional requirements

Many real-time systems have high non-functional requirements
(includes Quality of Service requirements) such as robustness,
availability, throughput, capacity, predictability, security and safety.

A system is robust when it behaves correctly under unplanned
circumstances. To achieve correctness and robustness, exceptional
conditions such as deadlock and race conditions must be prevented
and handling of software and hardware errors must be included.

Availability is a measure of the up time; i.e. the probability that a
computation will successfully complete before the system fails. It is
usually estimated with MTBF (mean time between failure).

Predictability of a system is the extent to which its response
characteristics can be known in advance [19]. Aspects of predictability
are for example schedulability, memory usage and memory
persistence.

Security means permitting or denying system access to appropriate
individuals and safety is a measure of how much risk the system incur
to the environment.

With throughput we mean e.g. the speed of a packet through the node,
from input to output.

Development of reliable and safe system involves architectural
redundancy in some form [20]. During modeling, redundancy can be

 Open
 MASTER’S THESIS REPORT 13 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

introduced in the system through the use of architectural design
patterns (see chapter 4.2.2).

2.1.5 Distribution

Large real-time systems are often distributed across many processors
and across dispersed physical locations. Advantages of distributing
large systems are among others, increased reliability, scalability,
support for local computing, low start-up costs and resource sharing. It
is also much more economical to set up a distributed system consisting
of a large number of cheap CPUs than to construct a centralized
system consisting of one single expensive mainframe computer.

But there are of course also “dark sides” of distribution. One lies in the
increased complexity compared to centralized systems. A distributed
system is highly dependent on the communication network: it can lose
messages, become overloaded and may not be able to provide the
bandwidth needed in an efficient way. It is harder to guarantee
security, e.g. identification and verification of requests to servers. The
distribution of control also makes the fault detection and the
administration harder.

In general, design issues that accompany distributed systems are
concurrency, unreliable communication media, prolonged and variable
transmission delays, relativistic effects and the possibility of
independent partial system failures [6].

2.1.6 Implementation constraints

Real-time systems are often embedded, which means that they are a
part of a larger system with the purpose to help it achieve its overall
responsibility. The software must often be tightly integrated with the
hardware and be able to handle low-level interrupts and hardware
interfaces. Embedded systems are generally very hard to validate,
because of the lack of debugging tools. Most of them lack the
possibility to display errors and diagnostic messages.

As many products are extremely cost-sensitive, the amount of
resources in real-time systems is often strongly limited. This places
high demands on the real-time developers to make even more efficient
software. Instead of replicating expensive hardware, it can in some
cases be more economically to replicate software to achieve increased
fault-tolerance.

The usage of the services that is provided by the underlying operating
system is often greater in real-time systems than in non-real-time
systems. RTOS (Real-Time Operating Systems) provide, among
others, services for secure resource sharing and thread
synchronization. The integration with the RTOS is commonly done
during the implementation, but the integration can be handled earlier,
by including it in the design model.

 Open
 MASTER’S THESIS REPORT 14 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

2.2 STANDARD UML

The purpose of this chapter is to give readers, unfamiliar with UML, a
brief introduction to the different UML diagrams used in the discussions
later on in this report. Readers already familiar with these diagrams
can skip to chapter 2.3.

Note: In the following chapters, when using the term “UML”, we will be referring to
Standard UML 1.3 [1], which includes a core and an extension. “UML-RT” will denote
UML Real-Time.

2.2.1 Use Case diagrams

A Use Case diagram illustrates a set of Use Cases for a system, the
actors, and the relations between the actors and the Use Cases. A Use
Case is a named capability of a structural entity in a model [5]. This
entity can be the entire system viewed as a black box, a subsystem or
even a class. The actors are objects outside this entity that has
significant interactions with it.

In RUP a Use Case is explained in the following way: A use case
defines a set of use-case instances, where each instance is a
sequence of actions a system performs that yields an observable result
of value to a particular actor [2].

A Use Case diagram captures a broad view of the primary functionality
of the system (or subsystem). Non-technical users, e.g. customers, can
easily grasp how the environment can use the system (subsystem).

 Open
 MASTER’S THESIS REPORT 15 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Operator

External Network

Start GGSN

GGSN Payload DownLink

GGSN Payload Uplink

SGSN

GGSN Load Check

GGSN Generate G-CDR

<<extend>> <<extend>>

GGSN QoS Negotiation

SGSN-Initiated PDP Context
Activation

<<include>>

<<extend>>

<<include>>

DHPC IP Address Allocation

<<extend>>

DHPC Server

Figure 2. Four Use Cases in the GGSN-Light system with two extensions,
marked with stereotype <<extend>>, and two inclusions, marked with
stereotype <<include>>.

2.2.2 Sequence diagrams

UML describes interaction with two types of diagrams: Sequence
diagrams and Collaboration diagrams. Both diagrams show scenarios
but differ in what they emphasize.

The Sequence diagrams illustrate message interactions between
instances and classes in the class model. They emphasize time and
sequence. The objects are shown as vertical lines and messages/
interactions as arrows between these lines. Time passes downward in
the diagram but is in most tools not to scale.

 Open
 MASTER’S THESIS REPORT 16 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

 : MS : SGSN : IP-Backbone
Network

 : GGSN : BSS

Attach RequestAttach Request

New Temporary.
Location Link IdNew Temporary.

Location Link Id

PDP Context Activation
PDP Context Activation

Create TID

Send APN
Send APN

Ask for IP-number

Send IP-number

Create Logical Link
Create Logical Link

Send IP-number

Send IP-number
Send IP-numberSend IP-number

 : External Network

Figure 3. Sequence diagram from Rational Rose showing a sequence in the
entire GPRS system during a “PDP Context Activation”.

Normally, a Sequence diagram is used to show only one flow of
events. Consequently, several sequence diagrams may be needed to
describe e.g. one Use Case. There are ways to show alternative,
exceptional and concurrent flows in interaction diagrams and we will
discuss these possibilities in chapter 4.1.1.

2.2.3 Collaboration diagrams

The other type of interaction diagrams is Collaboration diagram. This
too illustrates the message interactions between instances and classes
in the class model. It, however, emphasize context by showing objects
and their relationship. A Collaboration diagram is drawn as an object
diagram with message arrows drawn between the objects to show the
flow of messages (see Figure 4).

 Open
 MASTER’S THESIS REPORT 17 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

 : MS : SGSN : IP-Backbone
Network

 : BSS : GGSN : External
Network

1: Attach Reque st 2: Attach Request

3: New Temporary.
Location Link Id

4: New Temporary.
Location Link Id

5: PDP Con text Acti vat ion 6: PDP Context Activation
7: Send APN 8: Send APN

9: Create TID

10: Create Logical Link 11: Create Logical Link 12: Ask for IP-number

13: Send IP-number14: Send IP-number15: Send IP-n umber

16: Send IP-number17: Send IP-number

Figure 4. Collaboration diagram from Rational Rose showing the same
sequence as in Figure 3.

Labels (sequence numbers) are placed on the messages to show the
order, in which the messages are sent, more about this in
chapter 4.2.2.

2.2.4 Class diagrams

A class diagram shows the static structure of the model, i.e. classes
and types and their internal structure and relationship. It can also
contain interfaces, packages and instances (objects and links).

The relationships that can be used are association, aggregation,
composition, generalization, and dependency [19].

S ys te m

G G S N
(f ro m G G S N U s e C a s e s)

S G S N
(f ro m G G S N A c t o r s)

A s s o c ia tio n
(A g g r e g a tio n)

1 . . n 1

D e p e n d en c y

G e n e r a l i za tio n

R e fi n e m e n t

G P R S - S ys te m

< < re f i n e m e n t> >

G S N

1 . . *

11

1 . . *

Figure 5. Class diagram from Rational Rose showing different relations among
classes. A part of the GPRS system is used to illustrate this.

 Open
 MASTER’S THESIS REPORT 18 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

2.2.5 Object diagrams

Objects can be shown in an object diagram. An object diagram is a
variant of a class diagram and uses the same notation and
relationships. The objects are drawn as classes but have their names
underlined.

An object diagram can be used to exemplify a complex class diagram
by showing what the actual instances and the relationships could look
like at a certain point in time [16].

2.2.6 Statechart diagrams

A Statechart diagram shows the life cycle of an object, a subsystem or
the entire system. It illustrates the events and states of an object, and
the behavior of an object in reaction to an event [17]. States are shown
as rounded rectangles and transitions as arrows between the objects.
An arrow is labeled with the event that triggers the transition along with
possible guard conditions (the transition is performed only if the
Boolean expression evaluates to true) and actions (that are executed
when the transition fires) see also Figure 6.

Syntax: event-name (parameters) [guard] / action list^event-list.

State1

SubState1 Substate2

State2

StartStat

SubState1 Substate2

State3

 / Start_Action

EventS1(Arg1, Arg2)[Guard1] / Action1

EventS2 / Action2a, Action2b

Event3
Event4

StopStat

Event4

Event3[Guard3a and Guard3b]

StopEvent[StopGuard]

Exit_SubEvent (ArgSubState)

Exit_SubEvent
(ArgSubState)

Figure 6. A Statechart diagram from Rational Rose.

Statechart diagrams are commonly attached to classes that have
clearly identifiable states and complex behavior. The Statechart
diagram can specify the entire behavior of a system or a class; in
opposite to the interaction diagrams that only describe parts of the
behavior.

 Open
 MASTER’S THESIS REPORT 19 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Example I: The Statechart diagram in Figure 6 shows that event “Create PDP Context
Response” could not be sent until a PDP Context has been successfully created
(the guard [Able to create PDP Context] guarantee this). The “Create PDP
Context Request” event must also have happened and the object/system need
to be in the “Activate PDP Context” state.

Idle

PDP Context
Activated

Create PDP Context Request

Activate PDP Context

entry/ GGSN Load Check

[else]

[Able to create PDP context] / Create PDP Context Response

Figure 7. A Statechart diagram from Rational Rose showing the Use Case
“Activate PDP Context”. Statechart diagrams can be used to show the order
among events. It also shows an example where one flow of control is divided
into two flows that run in parallel.

As we will discuss later in this report, Statechart diagrams play an
important role in the development of real-time systems, partly for their
ability to show concurrency (see section 4.2.1). Figure 7 shows an
example where one flow of control is "divided" into two flows that run in
parallel.

2.2.7 Activity diagrams

An activity diagram shows sequential flow of activities. It is a variant of
a Statechart diagram and has a slightly different purpose. It captures
actions and their results in terms of object state changes. Activity
diagrams were primary introduced into the UML to capture complex
business activity models, but can also be used for requirements,
analysis, and design modeling.

One difference between an activity diagram and a Statechart diagram
is that the states in the activity diagram transition to the next state
directly when the action in the state is performed, i.e. the transition
arrows are only labeled with guard conditions, send-clauses (to send a

 Open
 MASTER’S THESIS REPORT 20 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

message on a transition) and action-expressions. Events are specified
within the states. An exception is that the transition from the Start-state
(illustrated by a smaller solid circle) may be labeled with an event.

Another difference is that the actions in an activity diagram may be
placed in swimlanes [16]. A swimlane groups activities, with respect to
who is responsible for them for them or where they reside in an
organization. This could be useful when showing synchronization of
threads according to Figure 8.

Activity 1A

Activity 1B

Activity 2A

Activity 2B

Activity 2C

Activity 2D

Activity 3A

Activity 3B

Activity 1D

Tas k 3Task 2Task 1

Synchronization points

Swimlanes

Object 3Object 2Object 1

Figure 8. Activity diagram from Rational Rose with Swimlanes, showing how
synchronization of threads can be described.

2.2.8 Component diagrams

Physical Architecture is in UML illustrated in two different diagrams:
Component diagrams and Deployment diagrams. Component
diagrams show compiler and run-time dependencies between software
components, such as source code files and DLLs. A component is
shown as a rectangle with an ellipse and two smaller rectangles to the
left. Only component types are shown in a component diagram,
instances are shown in deployment diagrams.

If one component needs another component to be able to have
complete definition, this is shown by a dependency connection (a
dashed line with an open arrow) between the components.

 Open
 MASTER’S THESIS REPORT 21 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

2.2.9 Deployment diagrams

Deployment diagrams show the distribution of processes, components
and devises to processing nodes.

Nodes are physical objects such as computers with processors,
printers, communication devises and so on. They are drawn as three-
dimensional cubes with the name inside.

Communication associations, drawn as straight lines connect nodes to
each other.

Only instances of executable components (run-time components) are
shown in deployment diagrams. They are connected via dashed-arrow
dependencies.

2.3 UML FOR REAL-TIME

UML for Real-Time (UML-RT), developed by ObjecTime Limited and
Rational Corporation, is a combination of UML modeling concepts, and
special modeling constructs and formalisms defined in the Real-Time
Object-Oriented Modeling (ROOM) language [11].

ROOM was originated at Bell-Northern Research [6]. It is a visual
modeling language for complex, event-driven and potentially distributed
real-time systems. ROOM models are composed of actors who
communicate with each other by sending messages along protocols.

Constructs that have been added to the UML modeling structure to
form UML-RT are Capsules, ports and connectors. Protocols have
been added to the modeling behavior. Role modeling has also been
included as an extension to the standard modeling techniques. Role
modeling captures the structural communication patterns between
software components [11]. UML-RT focuses more on behavior than
UML and as shown later in this report, it is good to focus on state
machines as early as possible when designing with UML-RT.

2.3.1 Capsules

Capsules correspond to the ROOM concept actors [6]. They are
potentially concurrent and possibly distributed architectural
components that represent a logical encapsulated thread of control in
the system. In UML-RT these Capsules are represented by classes,
specialized by the stereotype <<Capsule>>.

 Open
 MASTER’S THESIS REPORT 22 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

C a ps u le C la ss A

+ / p o rt_ x 1 : P ro to c o lA ~
+ / p o rt_ x 2 : P ro to c o lB
/ p o rt _x 3 : P ro to c o lC

< < C a p su le > >

C a p su le C la ssB

+ / p o rt_ y2 : P ro to c o lB
+ / p o rt_ y1 : P ro to c o lC ~

< < C a p su le > >

P ro to c o lA

s ig na l1 (v o id)
s ig na l2 (v o id)

s ig na l3 (v o id)
s ig na l4 (v o id)

< < P ro to c o l> >

P ro to c o lB

s ig n a l5 (v o id)

s ig n a l5 (v o id)

< < P ro to c o l> >
P ro to c o lC

s ig n a l6 (v o id)

s ig n a l7 (v o id)

< < P ro to c o l> >

 / c a p su le C la ssB R o le 1 / c a p su le C la ssB R o le 1

+ / p o rt_ x1 ~+ / p o rt_ x1 ~ + / p o rt_ x2+ / p o rt_ x2

+ / p o rt_ y2+ / p o rt_ y2

+ / p o rt_ y1 ~+ / p o rt_ y1 ~

/ p o rt _x3# / p o rt _x3

Figure 9. UML notation for Capsules: Class specialized by the stereotype
<<Capsule>>.

Capsules are composite objects, i.e. they have an internal structure
that can be composed by passive objects and/or other Capsules (a.k.a.
Subcapsules). Figure 9 shows a Capsule "CapsuleClassA" with a
Subcapsule "CaspsuleClassB". The internal structure of a Capsule is
specified in a structure diagram (a kind of collaboration diagram). The
structure diagram corresponding to CapsuleClassA is shown in Figure
10.

The state machine associated with the Capsule realizes the
functionality. The state machines can be combined with an internal
network of collaborating Subcapsules joined by connectors.

The communication between Capsules is based exclusively on
message passing between ports; they cannot have public operations or
other public parts. They can however have private operations. The
communication with passive classes is done "as usual", i.e. the
Capsules call public operations in the passive classes.

2.3.2 Ports and Connectors

Ports mediate the Capsule’s interaction with its environment. They are
physical parts of the implementation of a Capsule and provide a
mechanism to export multiple different interfaces. Each port is tailored
to a specific Capsule role.

The ports make the Capsule highly reusable by forcing them to fully
de-couple their internal implementations from any direct knowledge

 Open
 MASTER’S THESIS REPORT 23 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

they have about the environment. Viewed from the outside of the
Capsule, the ports cannot be differentiated except by their identity and
their type, however, when viewed from the inside ports can be of two
kinds: relay ports and end ports. Relay ports are connected to
Subcapsules (e.g. port_x2 in Figure 9), while end ports are connected
directly to the state machine of the Capsule (e.g. port_x1 and port_x3
in Figure 9). Relay ports are thus ports that only pass all signals
through. They can only appear on the boundary of a Capsule and
consequently always have public visibility. End ports may appear either
on the boundary of a Capsule or completely inside a Capsule. The
protected end ports (the ones that are on the inside, e.g. port_x3 in
Figure 9) are used by the state machine to communicate with its
Subcapsules or with external implementation-support layers (that
represent run-time services).

Connectors correspond to the ROOM bindings. They are used to
connect ports and are hence abstract views of signal-based
communication channels. A connector can only interconnect ports with
complementary types or ports of a symmetric type (see chapter 2.3.3).
A port that has a complementary protocol with another port is called
conjugated and is illustrated with a white square. Unconjugated ports
are black.

Figure 10. Structure diagram of CapsuleClassA showing the UML-RT notation of
ports.

2.3.3 Protocols

Protocols define the valid flow of information (signals) between
connected ports of Capsules. They are pure behavior and do not
specify any structural elements. Because a protocol defines an
abstract interface that is realized by a port, they too are highly
reusable.

A protocol role is the specification of the set of in- and out-signals that
can be received by and sent from the port [13]. The protocol defines
the port type, which means that the port implements the behavior
specified by that protocol. Ports must be of complementary types or of

 Open
 MASTER’S THESIS REPORT 24 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

a symmetric type to exchange messages. Two protocols are
complementary if every in-signals of one protocol is defined as an out
signal in the other protocol, and vice versa (see Figure 11 and
Figure 12). A protocol is symmetric if every in signal is also defined as
an out signal (in the same protocol) and vice versa (as ProtocolB in
Figure 11). A Capsule role will typically require a protocol for each
Capsule role that it is associated with.

Figure 11. The UML notation of Protocol. ProtocolB is symmetric.

A protocol complementary to ProtocolA would have signals defined
according to Figure 12.

Figure 12. ProtocolA~ is complementary to ProtocolA in Figure 11.

 Open
 MASTER’S THESIS REPORT 25 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

3 DEFINITION OF OUR EVALUATION MODEL

When evaluating the different modeling techniques, we use an
evaluation object very similar to the systems developed by ERV, this to
provide a relevant reference model that the software developers at
ERV easily can associate to. An object in the right context will also help
us to catch real-time requirements that are specific for ERV systems.

The evaluation object chosen is the GGSN9 from the GPRS10 system.
We use the open and official requirements on the node and then we
simplify it to limit the size and concentrate on the parts with the most
widespread range of real-time requirements. We call this node GGSN-
Light. Most of the examples used to explain certain modeling
techniques in this report are based on the GGSN-Light system.

3.1 THE GPRS-SYSTEM

GPRS is a technology for sending packet-data over GSM11 networks. It
is one of the first steps toward third-generation mobile telephone
networks that will provide multimedia service at high data rate.

The parts of the GPRS System that carry out the switching of packet
data are called the SGSN12 and the GGSN [7]. Figure 13 shows a
logical view, according to reference [7], of the GPRS system with the
GGSN node connected to the external IP-Network (the Internet) in one
end and connected to a number of SGSN nodes in the other end. An
IP-Backbone Network physically separates GGSN and SGSN from
each other.

9 Gateway GPRS Support Node
10 General Packet Radio Service
11 Global System for Mobile Communication
12 Serving GPRS Support Node

 Open
 MASTER’S THESIS REPORT 26 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

GGSN
(Gateway GPRS
Support Node)

SGSN
(Serving GPRS
Support Node)

IP-
Backbone
Network

External
Network

MS
(Mobile
Station)

BSS
(Base Station

System)

SGSN
(Serving GPRS
Support Node)

1

m

.

.

.

MS
(Mobile
Station)

.

.

.

1

n

BSS
(Base Station

System)

1

k

Gn interfaces

Gi interfaces

Figure 13. A logical view of the GPRS system, including the names of the
interfaces.

3.2 THE GGSN

GGSN is a primary component in the GSM network using GPRS.
GGSN provides:

• The interface towards the external IP-Packet Networks. From the
external IP-Packet Network’s point of view, the GGSN act as a
router for the IP-addresses of all subscribers served by the GPRS
network.

• GPRS session management, communications setup towards
external network.

• Functionality for associating the subscribers with the right SGSN.

• Output of billing data.

3.2.1 The GGSN-Light

The GGSN-Light is, as mentioned earlier, a modified GGSN that
serves as our evaluation and work model.

 Open
 MASTER’S THESIS REPORT 27 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Terminology used for GGSN-Light

PDP Context This is a connection between a mobile station (or
SGSN from GGSN-light’s point of view) and the
External network.

PDU Packet Data Unit, a packet from the External Network
to SGSN.

IP-Packet A packet from SGSN to the External Network13.

G-CDR GGSN Call Data Record14, used to store charging
data.

Functional Requirements for GGSN-Light

• Start . Is initiated when an operator presses the power-on button15.
During startup the GGSN-Light must gather information about the
available hardware in the Control System, distribute processes to
the different processors and start the static processes in the
Control System. In the Transmission System, the distribution to the
different processors must also be done, along with the startup of all
the hardware devices. The peer network elements must be
informed about the awareness of the GGSN-Light and the GGSN-
Light must start to broadcast its IP-address to the IP-Backbone and
the external network. The startup of the Transmission System and
the Control system should be done in parallel.

• Do PDP Context Activation . Is initiated when GGSN-Light
receives a Create PDP Context Request from the SGSN. The
GGSN-Light checks the load situation and negotiates about a QoS
level for the session. If they are OK a G-CDR is created and
associated with the new PDP Context. The PDP Context is also
associated with one Downlink and one Uplink PDU Destination
Address. The GGSN allocates a DHCP IP-Address and the sends
a Create PDP Context Response to the SGSN.

• Do a Payload Uplink . The GGSN receives an IP-packet containing
a PDU from the SGSN. The GGSN-Light extracts the PDU and
obtains the PDU Destination Address to point out the correct PDP
Context. The G-CDR is updated if a certain volume limit
(VolumeLimit) has been reached and the GGSN-Light forwards the
PDU to the external network.

• Do a Payload Downlink . The GGSN receives a PDU from the
external network and uses the PDU Destination address to point
out the correct PDP Context. The G-CDR is updated if a certain

13 The GTP-U concept has been removed in GGSN-Light.
14 There is only 1 G-CDR per PDP Context in GGSN-Light.
15 The possibility to start the node via a management terminal has been omitted in GGSN-Light.

 Open
 MASTER’S THESIS REPORT 28 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

volume limit (VolumeLimit) has been reached and the PDU is
encapsulated in an IP-Packet, together with the PDU Destination
Address, before it is transferred to the SGSN16.

• Do a PDP Context Deactivation . Is initiated by an internal event17.
GGSN-Light sends a Delete PDP Context Request to the SGSN,
which sends a Delete PDP Context Response back to the GGSN-
Light if the Request is accepted. GGSN-Light makes a final update
of the G-CDR, closes it and then deallocates the DHCP IP-
Address. Finally GGSN-Light removes the PDP Context data.

• Stop . Is initiated by an operator request via the management
terminal. The GGSN-Light must disconnect all hardware devices in
the transmission System and stop all internal applications. GGSN-
Light stops the traffic without informing the peer network elements.
No traffic data may be lost.

Non-functional requirements for GGSN-Light

• A GGSN Startup must be done within T1 s.

• GGSN should be able to pass X1 IP-packets each second between
the External Network and the IP-Backbone Network (a pass of a
packet is a Payload Downlink or a Payload Uplink). One packet
equals X2 bytes.

• Keep track of X3 PDP Destination Addresses18. A PDP Context has
one PDP Destination Address in each direction out of the node.

• Handle X3/2 PDP Contexts.

• Do a PDP Context Activation within T2 s.

16 The APN routing is not modeled in GGSN-Light.
17 This is not the normal procedure, but this is done so we will be able to model an internal event.
18 In the original GGSN every PDP Context has a TID (Tunnel Identity) in each direction. The TID has been
replaced by a PDU Destination Address to simplify the system and the model.

 Open
 MASTER’S THESIS REPORT 29 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

4 MODELING

This chapter presents how UML and UML-RT can be used to model
systems with real-time requirements and how Rational Rose and Rose-
RT support these methods. The chapter is structured after the different
workflow in RUP, starting with the requirement workflow. Only issues
and activities that concern modeling of real-time systems will be
discussed.

4.1 REQUIREMENTS WORKFLOW

The Requirements Workflow in RUP consists of a number of activities
(see Figure 14) where the requirements of the system are captured
and are gathered in a Use Case model. During the requirements
workflow the Use Case model is mainly used in the communication
with the customer and should have a black-box perspective (i.e.
internal details on what the system must do are either missing or
described very summarily). The Use Case model is later, during the
analysis and design workflow, supplemented with descriptions of the
internal flows.

.

[Requirements
Definition Complete]

Baseline Project
Requirements

Refine the System
Definition

[Can’t do all
the work]

Manage the Scope of
the System

Define the System

[More
Iterations]

[Work in Scope]

Understand
Stakeholder Needs

Manage Changing
Requirements

[New Input]

Figure 14. The Ericsson GSN RUP adaptation of the requirements workflow.

4.1.1 Use Case modeling

The Use Case model must capture both functional and non-functional
requirements. The extraction and exploration of non-functional

 Open
 MASTER’S THESIS REPORT 30 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

requirements are a primary concern in real-time systems, where these
requirements often are just as important as functional requirements.

It can be hard to visually model non-functional requirements, but UML
provides the capability to model some of these requirements by using
OCL (Object Constraint Language) in different ways.

OCL is a formal language, included in the definition of UML, used to
express constraints. OCL is a pure expression language. When an
expression is evaluated it simply returns a value. It is therefore
guaranteed to be without side effects, i.e. it cannot change anything in
the model. OCL can however be used to specify a change.

Example II: constraint {LimitX<=LimitY}
guard [LimitX<=LimitY]
invariant {<<invariant>> LimitX<=LimitY}

In chapter 4.1.1.1 and 4.1.1.2 we give a few examples on the
possibilities to use OCL expressions in different diagrams that we have
seen. Further, it is important to know that an evaluation of an OCL
expression is instantaneous, i.e. the states of objects in a model
cannot be changed during evaluation.

When collecting and visualizing non-functional requirements through
OCL expressions they become easy to model and the traceability of
the requirements increase. In the diagrams that are used when
communicating with customers it can be appropriate to add the
constraints in natural language instead of in the correct OCL syntax.
Practice has however shown that specifying constraints in natural
language will lead to ambiguities.

There exist tools that are able to verify OCL written constraints but
neither Rational Rose nor Rational Rose-RT have this ability today.

4.1.1.1 Use Case Diagrams

The Use Case diagrams give a broad view of the Use Cases and their
relationship to the system’s Actors. Figure 15 shows a Use Case
diagram in Rose-RT where OCL is used to show some non-functional
and functional requirements. In chapter 4.2.1.2, “Statechart and Activity
diagrams for supplementary Use Case descriptions”, we will discuss
how OCL can be used for building state machines and from state
machines go to Capsules and Protocols.

Guideline 1: Use OCL to collect and visualize non-functional requirements in Use Case
diagrams as OCL-expressions are unambiguous and can be used to verify
the Use Cases.

 Open
 MASTER’S THESIS REPORT 31 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

GGSN Generate G-CDR

<<extends>

<<extends>

<<extends>

 External_Network

SGSN

Payload Downlink

Payload Uplink

SGSN-Initiated PDP
 Context Activation {<<invariant>> System_Condition = #PDP_Context_Activated}

{pre : PDP_Context_Condition = #Ready
 post : PDP_Context_Condition = #Ready
 post : PDU_Sent_To_External_Network}

{pre : System_Condition = #Idle
 post : System_Condition = #Idle
 post : System_Condition = #PDP_Context _Activated}

{<<invariant>> System_Condition = #PDP_Context_Activated}

{pre : PDP_Context_Condition = #Ready
 post : PDP_Context_Condition = #Ready
 post : IPPacket_Sent_To_SGSN}

Figure 15. Use Case diagram from Rational Rose-RT with some of GGSN-Light’s
constraints written in OCL.

In Rational Rose it is not possible to link OCL constraints directly to
model entities. Instead the OCL expressions have to be written in
Notes that are attached to the entities (see Figure 16).

Operator

SGSN

External Network

Start GGSN

{self.duration : Duration <=3 T1 s }
{pre: System_Condition = #Idle
post: System_Condition = #Idle
post: System_Condition =
#PDP_Context_Activated}

���

2SHUDWRU

([WHUQDOB

1HWZRUN

6WDUW **61

6*61

���

^VHOI�GXUDWLRQ�'XUDWLRQ� 7� V `

{pre: System_Condition = #Idle
post: System_Condition = #Idle
post: System_Condition =
#PDP_Context_Activated}

a)
b)

Figure 16. OCL constraints added to a Use Case in a) Rational Rose and
b) Rational Rose-RT.

 Open
 MASTER’S THESIS REPORT 32 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

It is important to remember that a Use Case diagram is not a complete
description of a Use Case. The Use Case diagram must be
complemented with textual descriptions and other diagrams. Despite
the advantages of complementing Use Case diagrams with diagrams
like interaction diagrams and state machines they are not yet widely
used in Use Case models. According to Use Case Modeling Guidelines
[21] for ERV’s GSN-projects each Use Case should have a name, a
short description, a Use Case diagram showing the relationship
between the Use Case and the Actors involved and a Use Case
Specification describing the different flows of events (main flow,
exceptional flows and alternative flows). The Use Case Specification is
a separate Word document that is linked to the Use Case in the Rose
model. There are no guidelines for the use of interaction and
Statechart diagrams.

One of the general advantages of using diagrams in parallel with the
textual descriptions is of course that they provide a clearer view of
flows of events and important requirements. Diagrams are often more
unanimous than textual descriptions. It is easier to discover mistakes,
errors and issues that have been overlooked.

4.1.1.2 Sequence Diagrams

Sequence diagrams can be used to show the different flows of events
of a Use Case and the requirements and constraints on these flows.
Since Sequence diagrams focus on time and it is appropriate to show
timeliness requirements in these diagrams. In the Sequence diagrams
in the requirements workflow the system should be shown as one
single black-box object, i.e. only the system’s interaction with its
environment should be shown, no consideration to what must be done
inside the system should be taken. The interaction with the
environment can be represented by "message arrows", but at this
stage, i.e. in the Use Case model, they should not be viewed as
concrete messages (messages at implementation level) but as a
notation for high-level interaction.

Performance budgets, such as overall performance and response
times can also be computed from a black-box perspective. Later in
analysis these overall system reaction deadlines propagate into
performance budgets on the individual operations and actions within
the system design.

Guideline 2: Use Sequence diagrams to show Main and Alternative flows of Use Cases as
they show the flows in a clear and unambiguous way.

Guideline 3: Show no more than the system as a “black-box” together with the Use Cases’
actors in the Sequence diagrams during the requirement workflow.

 Open
 MASTER’S THESIS REPORT 33 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Just as in the Use Case diagrams, Sequence diagrams can connect
OCL constraints directly to the model entities in Rose-RT and do not
have to use Notes for this as in Rose. Figure 17 shows two examples
where OCL has been used.

6*61 ([WHUQDOB1HWZRUN

�� ,3B3DFNHW

���� 3'8

D

E

^E�D� 7� V`

**61B/LJKW

� G+&3B6HUYHU5ROHB,3B$GGUHVVB$OORFDWLRQ

� **61B/LJKW

� V*615ROH B3'3B&RQWH[WB$FWLYDWLRQ

�� &UHDWH 3'3 &RQWH[W 5HTXHVW

���� '+&3',6&29(5BPHVVDJH

������ '+&32))(5BPHVVDJH

���� '+&35(48(67BPHVVDJH

������ '+&33$&.BPHVVDJH

���� &UHDWH 3'3 &RQWH[W 5HVSRQVH

^E�D � 7� V`

E

D

Figure 17. Example from Rational Rose-RT showing how OCL can be used in
Sequence diagrams.

As an alternative to Notes, Rational Rose can add OCL constraints as
pure text, but then they cannot be connected to model entities (see
Figure 18).

Guideline 4: Use OCL in Use Case Sequence diagrams to model timeliness requirements
like response time, deadlines, throughput and so on. They provide, among
others, an aid during the verification of the Use Case.

 Open
 MASTER’S THESIS REPORT 34 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

{b-a<T2 s}

{b-a<T3 s}

Figure 18. Example from Rational Rose on the use of OCL constraints in
Sequence diagrams. The first constraint is a deadline and the second a
throughput. The OCL constraints are added as pure text and are not connected
to the model entities.

It is important to remember that Sequence diagrams dose not specify
the entire behavior of a Use Case. They are helpful in extracting and
understanding requirements. They can also be used to define (or
generate) test specifications for the system, e.g. customer’s
acceptance test.

4.1.1.3 Statechart and Activity diagrams

When developing systems with a high degree of concurrency it is
important to focus on states and state machines early in the
development process, especially when using UML-RT. This because of
the fact that the design of Capsules to a high extent revolves around
state machines. An early focus on states will therefore make the
transformation from the Use Case model to the Design model easier
and more efficient. In the requirement workflow, the Statechart
diagrams should, just as the Sequence diagrams, only show the
system from a black-box perspective. The states in the Statechart
diagrams should correspond to the state or condition of the entire
system and not to states of different subsystems.

Statechart diagrams can be used to describe pre- and post-conditions
for a Use Case, i.e. to specify in which condition the system must be in
before and after a Use Case is performed. Statechart diagrams are
also powerful when used to describe alternative and exceptional flows
in a Use Case. Exceptional flows for example can come anytime during

 Open
 MASTER’S THESIS REPORT 35 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

a Use Case and a Statechart diagram can model this unambiguously.
This is exemplified in Example III.

Example III: Figure 19 shows the Statechart for Use Case “Start GGSN”. Here the main flow
is “Power on” from operator to state “Startup”, when “Startup” has finished the
system will be in idle condition, i.e. state “Idle”. There is an alternative flow,
named A1:Startup Terminated” which will put the system in Failure condition.
There is also an exceptional flow, named E1:Restart. This can take place any
time during the Use Case and will result in a new start of the system. Figure 20
shows the same states but after supplementing the Use Case description.

Star GGSN
Startup

Idle

Startup
Failure

E1: Restart

Power
On

A1: Startup Terminated

Figure 19. The state machine (from Rational Rose) for Use Case “Start GGSN”
showing: 1) Main flow from “Start” to “Idle”. 2) Alternative flow to “Startup
Failure” and 3) Exceptional flow.

When switching to a white-box perspective (in the supplementary Use
Case descriptions) the advantage is even clearer. Here the "GGSN
Start"-state is expanded (see Figure 20) with sub-states that specify
what must be done within the system. More about supplementary Use
Case descriptions and advantages of state machines can be found in
chapter 4.2.1.2).

 Open
 MASTER’S THESIS REPORT 36 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Star

GGSN Startup

Startup of

Startup
Control

Startup In
Syste

Broadcast
Addres

Idle

Startup
Failure

E1: Restart

Power
On

Startup of subsystems

Startup
Control

Startup In
Syste

Startup In
Control System

Startup In Transmission
System

Broadcast IP
Address

A1: Startup
Terminated

Figure 20. Same Use Case as in Figure 19, but after supplementing the Use
Case description.

If concurrency is not shown or cannot be shown in the Sequence
diagrams, Statechart and Activity diagrams are even more important
and useful, because of their ability to show concurrency (e.g. among
and within the Use Cases).

4.2 ANALYSIS & DESIGN WORKFLOW

The purpose of the analysis and design workflow is according to
RUP [2]:

• To transform the requirements into a design of the system to-be.

• To evolve a robust architecture for the system.

• To adapt the design to match the implementation environment,
designing it for performance.

During the analysis and design workflow the work continue on the Use
Case model and an Analysis and a Design model are produced.

 Open
 MASTER’S THESIS REPORT 37 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Design Real-Time
Components

[Non-Real-Time] [Real-Time]

Design Components

Analyze Behavior

Refine Architecture

[Early Elaboration
Iteration]

Define a Candidate
Architecture

Figure 21. The Ericsson GSN RUP adaptation of the analysis and design
workflow.

4.2.1 Supplementing Use Case descriptions

One of the first activities during the analysis and design workflow is the
Use Case Analysis (included in “Define a Candidate Architecture” and
in “Analyze Behavior”). The first step in this activity is to make
supplementary Use Case descriptions. The system should no longer
be regarded as a black-box system. To be able to find analysis classes
there must in most cases also be a white-box description of the
system, i.e. a description of what the system must do from an internal
point of view. Diagrams useful when supplementing the Use Case
descriptions are Sequence, Statechart, and Activity diagrams.

4.2.1.1 Sequence diagrams for supplementary Use Case descriptions

When supplementing Use Case descriptions the system is still
regarded as one single object in the Sequence diagrams, but now
internal actions are added with the help of Internal Messages and
Local Actions (Local Actions are only available in Rational Rose-RT).
One of the main issues for real-time systems is concurrency.
Concurrency can be modeled in Sequence diagram by showing parallel
focus of control (FOC) and with thread identifiers. The opinions are
divided about whether it is good modeling practice to do so. Many
tools, among them Rose, do not support parallel flow in Sequence
diagrams. In these tools one sequence diagram has to be made for
every flow that should be modeled. This can be time-consuming,
especially during the requirements workflow were the system is

 Open
 MASTER’S THESIS REPORT 38 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

modeled as a single object. According to the OMG UML Specification
[1], there are several different formats of Sequence diagrams. A
generic Sequence diagram describes all possible sequences and an
instance Sequence diagram describes one actual sequence. Of course
there exist formats in between these that do not show all possible
flows, but at least more than one.

Guideline 5: When focusing on concurrency, use the sequence diagram format that
contains several possible sequences in the same diagram.

Guideline 6: When focusing on execution control, use the sequence diagram format that
contains only one actual sequence.

Guideline 7: Sequence diagrams describing Use Case behavior should not focus on
execution control. In a real-time system, dealing with concurrency, use the
Sequence diagram format that contains several possible sequences in the
same diagram.

In Rational Rose-RT, internal actions can also be indicated by
rectangles on the object lifeline, so called Local Actions (see Figure
22). More specifically a Local Action represents a significant activity or
operation being performed by the object instance at that time.
According to RUP the Use Case descriptions made during the
Requirements workflow should show how and when the Use Case
uses data stored in the system, or stores data in the system. Local
Actions provides a god means of doing this in Sequence diagrams. As
Rational Rose does not support Local Actions, Notes or Internal
Messages have to be used instead.

Guideline 8: Use Local Action (when using Rational Rose-RT) or Notes or Internal
Messages (when using Rational Rose) to show how data is used during a Use
Case.

Another concept that exists in Rational Rose-RT but not in Rational
Rose is co-regions. Co-regions are used to indicate a set of outgoing
or incoming messages/events whose ordering is undefined. They can
also be used to obtain thread identifiers (letters a, b, ...) in the
sequence numbering (see Figure 22). These thread names are very
important in Collaboration diagrams where message ordering and
concurrency are not shown visually in the same way as in Sequence
diagrams. More about thread identifiers and sequence numbering in
chapter 4.2.2.3.

The start and end of a co-region are marked with a thick black
horizontal line on the object’s lifeline.

 Open
 MASTER’S THESIS REPORT 39 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

�� &UHDWH 3'3 &RQWH[W

5HTXHVW

�� &UHDWH 3'3 &RQWH[W

5HTXHVW ���� /RDGB&KHFNB 2. � **61 /RDG &KHFN � �

���D� >4R61HJRWLDWLRQB2.@ *HQHUDWH *�&'5 � �

���E� >4R61HJRWLDWLRQB2.@ '+&3 ,3 $GGUHVV $OORFDWLRQ � �

���D��� *HQHUDWLRQB 2. � %RROHDQ

���E��� ,3B$GGUHVVB$OORFDWLRQB 2. � %RROHDQ

>$OORFDWLRQB2. DQG *HQHUDWLRQB2.@ $FWLYDWLRQB 2. � 7UXH

���� &UHDWH 3'3 &RQWH[W 5HVSRQVH �$FWLYDWLRQB2. � %RROHDQ�

^E�D � 7� V`
,QFOXVLRQ SRLQW

IRU'+&3 ,3 $GGUHVV

D

E

� V*615ROH B3'3B&RQWH[WB$FWLYDWLRQ

� **61B/LJKW

Figure 22. Sequence diagram of supplemented Use Case “Start GGSN” (from
Rational Rose-RT) showing a Local Action and Co-regions.

Figure 22 also shows the use of OCL in guards. The guards prevent
the activities from being performed if a certain requirement is not
fulfilled. The activity "Generate G-CDR" for example may not be
performed if the "QoS Negotiation" was not successfully performed.
Guards can hence be used to show alternative flows.

Another advantage of Rational Rose-RT (over Rational Rose) is that it
can show states in the Sequence diagrams in order to bridge the gap
between Sequence and Statechart diagrams. This is mainly useful in
the Analysis and Design model, but can also be powerful in the Use
Case model if Statechart diagrams are used for defining Use Case
behavior. States in Sequence diagrams are shown as rounded
rectangles placed on the vertical object lines. They are inserted to
mark a change in an object’s state. The object then stays in this state
until a new state appears further down on the object line.

Guideline 9: Only show Use Case states in the Sequence diagram if the Use Case
behavior also is described in Statechart diagrams. States in Sequence
diagrams bridge the gap between Sequence and Statechart diagrams.

 Open
 MASTER’S THESIS REPORT 40 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

�����E���
�����D���

�� � 3RZHU 2Q

�2SHUDWRU

**61 6WDUWXS

����

6WDUWXS RI 6XEV\VWHP

�����D� 6WDUWXS

�����E� 6WDUWXS

6WDUWXS LQ 7UDQVPLVVLRQ 6\VWHP

6WDUWXS LQ &RQWURO 6\VWHP

������

����

6\QF

�����E���

�����D���

������

����

,QIR DERXW **61
������ ,QIRUP DERXW **61

������

����

%URDGFDVW ,3 $GGUHVVHV

�����D� %URDGFDVW ,3 VXEQHW DGGUHVV

�����E� %URDGFDVW ,3 VXEQHW DGGUHVV

������

����

,GOH

�6*61 �([W� 1HWZRUN

**61 &RQWURO 6\VWHP Transmission
System

Figure 23. Example from Rational Rose-RT showing the use of state marks in
Sequence diagrams. Compare this with the state machine for the same Use
Case shown in Figure 23 on page 40.

 Open
 MASTER’S THESIS REPORT 41 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

4.2.1.2 Statechart and Activity diagrams for supplementary Use Case
descriptions

Statechart diagrams are typically used for describing the behavior of
classes, but they may also be used to describe behavior of the whole
system. Modeling Use Case with Statechart and Activity diagrams
could be a good choice in a couple of cases:

Firstly, when using Rational Rose-RT and UML-RT, the design focuses
on behavior and is based mainly on Statechart diagrams. By using
Statechart and Activity diagrams to analyze and describe Use Case
behavior, the transformation from the Use Case model to the Design
model is made easier and more efficient.

Guideline 10: For systems with a high degree of concurrency, use state machines when
analyzing Use Cases in order to make the transformation from Use Case
Model to Design Model easier.

Secondly, post- and pre-conditions for Use Cases are often hard to
model. Statechart diagrams can be used to verify the pre- and post-
conditions of the Use Case. Each Use Case shall have at most one
state machine.

Example IV: According to Figure 24, the end-state of Use Case “SGSN Initiated PDP
Context” is the same as the Superstate state of Use Case “Payload Uplink”.
This means that “SGSN Initiated PDP Context” must be performed before Use
Case “Payload Uplink” can start.

Guideline 11: Use state machines to specify the behavior of the system to verify the pre-
and post-conditions of the different Use Cases.

Thirdly, Statechart and Activity diagrams are good means of showing
and analyzing concurrency dependencies within and among the
different Use Cases. Each Use Case is modeled, in a Statechart or
Activity diagram according to Figure 24, with a state machine that
represents the change of the whole system during that Use Case and
with start and stop states representing pre- and post-conditions of that
Use Case. This hence shows concurrency and dependencies within
the Use Cases.

Guideline 12: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies within Use Cases.

All state machines can then be combined to a comprehensive state
machine that will show the complex concurrent behavior of the whole
system, see Figure 25.

Guideline 13: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies among Use Cases.

 Open
 MASTER’S THESIS REPORT 42 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

The transformation of the system’s state machine into Capsules and
Protocols will be described in section 4.2.3.2, Designing with Capsules.

GGSN Generate G-CDR

��H[WHQGV

��H[WHQGV

��H[WHQGV

([WHUQDOB1HWZRUN

6*61

3D\ORDG 'RZQOLQN

3D\ORDG 8SOLQN

6*61�,QLWLDWHG 3'3

&RQWH[W $FWLYDWLRQ ^��LQYDULDQW!! 6\VWHPB&RQGLWLRQ �3'3B&RQWH[WB$FWLYDWHG`

^SUH � 3'3B&RQWH[WB&RQGLWLRQ �5HDG\
SRVW � 3'3B&RQWH[WB&RQGLWLRQ �5HDG\

SRVW � 3'8B6HQWB7RB([WHUQDOB1HWZRUN`

Idl

PDP Context
Activate

Create PDP Context

Activate PDP
entry/ GGSN Load Check

[else]

[Activation_OK] /
^Create PDP Context

^SUH � 6\VWHPB&RQGLWLRQ �,GOH

SRVW � 6\VWHPB&RQGLWLRQ �,GOH
SRVW � 6\VWHPB&RQGLWLRQ �3'3B&RQWH[W B$FWLYDWHG`

^��LQYDULDQW!! 6\VWHPB&RQGLWLRQ �3'3B&RQWH[WB$FWLYDWHG`

^SUH � 3'3B&RQWH[WB&RQGLWLRQ �5HDG\

SRVW � 3'3B&RQWH[WB&RQGLWLRQ �5HDG\

SRVW � ,33DFNHWB6HQWB7RB6*61`

PDP Context
Read

Payload
entry/ Get Address
do/ Transfer PDU

Read

PDU_Receive

Payload
entry/ Create IP Packet

do/ Send IP Packet

[IPPacket_Sent_To_SGSN]PDP Context

CharginChargin

Payload Uplink

Payload Downlink

PDP Context
ReadRead

IP_Packet_Receive

Payload

entry/ Extract PDU
do/ Send

[PDU_Sent_To_External_Network]

Figure 24. Four different Use Cases are modeled with one state machine each
that represents the change of the whole system during each Use Case. The
state machines have been modeled in Rational Rose.

 Open
 MASTER’S THESIS REPORT 43 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Idl

Create PDP Context

Activate PDP

entry/ GGSN Load Check

[else]

[Activation_OK] /
Create PDP Context

PDU_Receive

Payload
entry/ Extrackt PDU

exit/ Send

[Transmition Finished] / Send IP_Packet

PDP Context

Read

IP_Packet_Receive

Payload

entry/ Create IP Packet

exit/ Send IP Packet

End
Transfer

[Transmition Finished] / Send

Chargin

Payload

Payload

Idl

PDP Context
Activate

Create PDP Context

Activate PDP
entry/ GGSN Load Check

[else]

[Activation_OK] /
^Create PDP Context

PDP Context
Read

Payload
entry/ Get Address
do/ Transfer PDU

Read

PDU_Receive

Payload
entry/ Create IP Packet

do/ Send IP Packet

[IPPacket_Sent_To_SGSN] PDP Context

CharginChargin

Payload Uplink

Payload Downlink

PDP Context
ReadRead

IP_Packet_Receive

Payload

entry/ Extract PDU
do/ Send

[PDU_Sent_To_External_Network]

Figure 25. State machines for four different Use Cases (from Rational Rose)
combined into one comprehensive state machine showing the complex
concurrent behavior of the whole system.

Guideline 14: When making Statechart diagrams for Use Cases concentrate only on the
states of the entire system and not on the states of different subsystems.

The UML standard contains simple and composite states. The
composite states are decomposed into two or more mutually exclusive
disjoint substates or into concurrent substates (so called regions). The
regions are used to describe concurrency in state machines. Dashed
lines are used to divide the composite states into regions (see Figure
26).

 Open
 MASTER’S THESIS REPORT 44 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Idle
Broadcast
IP Address

Startup of
Control System

Startup of Trans-
mission System

Inform about
GGSN

awareness

GGSN Startup

Startup of subsystems

Figure 26. State diagram of Use Case “Start GGSN” used as an example
showing the use of regions according to the UML standard. The Startup of the
Control System and the Transmission System are performed concurrently.

Composite states can be modeled in the same way in Rose, shown in
Figure 27, with one exception; the regions are not marked with dashed
lines.

Note: Regions must not be confused with swimlanes. They are not the same thing.
Swimlanes show which part of the system that is responsible for the actions and a
thread can “move” between different swimlanes during its execution. A region on the
other hand symbolizes the encapsulation of a thread and actions in the same thread
cannot reside in different regions.

 Open
 MASTER’S THESIS REPORT 45 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

S tar t

G GS N S t a r t u p

S t a rt u p o f s u b s y s t e m s

S tar tu p In T r ans m is s io n
S ys tem

S ta r t u p I n
C o n t ro l S y s t e m

I n f o rm a b o u t
G G S N

B ro a d c a s t I P
A d d re s s

S t a rt u p o f s u b s y s t e m s

S tar tu p In T r ans m is s io n
S ys tem

S ta r t u p I n
C o n t ro l S y s t e m

S tar tu p In T r ans m is s io n
S ys tem

S ta r t u p I n
C o n t ro l S y s t e m

I n f o rm a b o u t
G G S N

B ro a d c a s t I P
A d d re s s

Id l e

Figure 27. The example from Figure 26 modeled in Rational Rose.

In Rational Rose-RT the use of Statechart diagrams is a bit different
and more suited for design. Because of the structure and functionality
of Capsules there is no need for the possibility to show concurrency in
state machines in the design (more about this in Chapter 4.2.3.2). It is
still needed during Use Case modeling but unfortunately Rational
Rose-RT does not support both constructions of state machines.

An activity graph is, as mentioned in Chapter 2.2.7, a variation of a
state machine. Activity diagrams can be easier than Statechart
diagrams to start with when describing Use Case behavior. The
requirements and functionality of a system is often easier to formulate
on the form: “The system shall first do... and then...” (which graphically
corresponds to an Activity diagram) than on the form: “The system is in
the state ... and when... occurs the system transits to the state...”
(which corresponds to a State diagram). From the Activity diagram the
work proceeds with arranging the different actions into states.

Guideline 15: When describing Use Case behavior with state machines in Rational Rose,
use the Activity diagram as a means for finding the systems states.

The Activity diagram contains, just as the State diagram, a notation for
showing concurrency with the help of synchronization bars. The
different actions may be organized into swimlanes to show what part of
the system that is responsible for what action.

 Open
 MASTER’S THESIS REPORT 46 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Rational Rose-RT does not support Activity diagrams. They are only
available in Rational Rose.

4.2.2 Architectural analysis, Analysis classes/roles and Use Case
realizations

During the first parts of the analysis and design workflow a candidate
architecture is defined and a candidate set of analysis classes founded
from the Use Case behavior. Now the focus is changed from what
should be done to how it should be done. Use Case realizations are
made to serve as a bridge between the Use Case and the Design
Model and to provide a way to trace behavior between the two.

When defining a candidate architecture and finding analyze classes
there are a number of Patterns available that are specific for real-time
systems. There are safety related patterns, e.g. Firewall Pattern [19],
Multi-Channel Voting Pattern [19], Redundancy Patterns [19],
Watchdog Pattern [19], Safety Executive Pattern and framework
related patterns, e.g. Microkernel Arcitectural Patterns [19], Observer
Pattern [18], Proxy Pattern [18], Broker Pattern [19], State Pattern [19].
We will not look closer into these patterns in this report, but we can
recommend the following literature for more information:

• Doing Hard Time, Developing real-time systems with UML,
Objects, Frameworks, and Patterns [19].

• Pattern-Oriented Software Architecture: Patterns for Concurrent
and Network Objects [18].

4.2.2.1 Analysis classes

The analysis classes form a conceptual model of the system. They
represent system entities that have responsibility and behavior. These
classes later evolve into subsystems and classes in the Design model.
According to RUP an analysis class may be stereotyped as one of the
following [2]:

Boundary class

Entity class

Control class

Boundary classes represent the high-level interfaces to the systems
surroundings. They are the only classes that should have to be
changed when e.g. a GUI or a communication protocol is changed.

 Open
 MASTER’S THESIS REPORT 47 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

The entity classes model information and associated behavior that
must be stored. They are, just as the control objects, independent of
the environment of the system.

Control classes are used to model control behavior specific to one or a
few use-cases. Their behavior is of the coordinating type; they often
control other objects.

These stereotypes are not part of the UML Core, but are a part of the
UML Extension [1].

4.2.2.2 Analysis roles

Since Rational Rose-RT uses UML-RT that is based on ROOM, the
tool is suited for analysis with analysis roles instead of analysis
classes. The stereotypes for the analysis classes <<entity>>,
<<boundary>>, and <<control>> are not standard in Rational Rose-RT,
nor are the icons for these stereotypes. The possibility to create new
stereotypes and icons in Rational Rose-RT exists, if analysis with
analysis classes instead of roles is desirable.

The analysis with roles and the analysis with classes are very similar.
We had a hard time finding guidelines and explanations on how to
proceed when finding analysis roles. RUP makes no difference in the
analysis depending on whether Rational Rose or Rose-RT is used.
According to RUP the analysis is always done with analysis classes.
The Online Help in Rational Rose-RT does not contain any help
regarding the analysis work. It only states that there is no clear
distinction between analysis and design in the Rational Rose-RT
toolkit. In a Student Manual from Rational University on how to develop
real-time software with Rational Rose-RT [13] we found a section
about Roles in the chapter “Mapping Requirements to Design”. They
identify Roles in connection to the Use Case realizations and create
Collaboration and Sequence diagrams using these Roles. They also
give the following information and guidelines about Roles:

• During initial analysis it is very useful to think about the
implementation objects in a very abstract way, we do this using
roles.

• The complete behavior of a Use Case has to be distributed to
roles.

• To avoid confusion over exactly what a role is, think of them as
being objects that we are using to discover the design of the
system.

• Roles will eventually map down into design Capsules (most likely)
or Design Classes.

 Open
 MASTER’S THESIS REPORT 48 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

• Roles come from actors and Use Cases in the Use Case model
and the entities that are described in the Use Case supplementary
specifications.

The identification and the use of analysis roles are very similar to the
identification and the use of analysis classes. In addition the Student
Manual also mentions a technique for identifying roles by using
analysis classes (i.e. <<entity>>, <<boundary>> and <<control>>) and
says that the analysis classes discovered in the use cases will map
directly down into roles.

4.2.2.3 Use Case realizations

When a candidate architecture and a set of analysis classes have
been defined, the behavior of the Use-Cases must be distributed to the
analysis classes. The different flows of events of the Use Cases and
the interaction between the analysis classes during these scenarios
should according to RUP be illustrated in collaboration diagrams. The
structure of the system in the scenarios is clearer in a collaboration
diagram, but sequences are harder to follow since the reader must
visually hunt for the next message. Therefore it can be a good idea to
complement the collaboration diagrams with sequence diagrams. If
either a Sequence or a Collaboration diagram have been made in
Rational Rose the tool can generate the other, so no extra work is
needed. Rational Rose-RT has according to the online help the ability
to show the sequence in a scenario on the Collaboration diagram (by
sequence numbers) but we never got this option to work in our version
of Rational Rose-RT.

Since Collaboration diagrams do not show time as a separate
dimension, the sequence of interactions and the concurrent threads
must be described using sequence numbering. Sometimes it can be
convenient to use the sequence numbering in the Sequence diagrams
too, even though it has a time axis. It can, for example, make it easier
to see which message/interaction that corresponds to which, when
comparing Collaboration and Sequence diagrams.

The labels of the message/interaction arrows in the UML standard [1]
do not only contain the sequence numbering, they also contain
information about the message being sent, its arguments and return
values, guard conditions, iteration, branching, concurrency and
synchronization. The labels have the following syntax:

Syntax: predecessor/ [guard-condition] sequence-expression: return-value := message-
name argument-list

 Open
 MASTER’S THESIS REPORT 49 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Example V: A3,B4/ [limit_X>limit_Y] C3.1 : status := update()

Meaning, the message “update” will be sent (with no arguments) if limit_X is
larger than limit_Y. The result is stored in “status”. The sequence number of
this message is C3.1 where the C is the name of the concurrent thread. The
message may not be sent until message 3 in thread A and message 4 in thread
B have been sent (synchronization).

Neither Rational Rose nor Rose-RT have full support for this syntax,
why we will not here further explain the different terms in the label. The
description can be found in the OMG UML specification [1] (available
on the OMG home page).

The message labels in Rational Rose and Rose-RT only show
sequence numbering, the message name and arguments. In addition,
the sequence numbers do not contain a thread name (e.g. A, B, C),
which makes it hard to show concurrent threads in a clear an
unambiguous way.

Since Rose and Rose-RT cannot show concurrency in the sequence
numbering (with letters) the use of the different message stereotypes
are of great importance. The UML Core provides the following types:

Synchronous: Nested flow of control, typically implemented
as a call to a method/operation. The entire nested sequence
is completed before the outer level sequence resumes.

 Simple: Flat flow of control. Each arrow shows the
progression to the next step in sequence. Normally all of
these messages are asynchronous. This message type is
often used during the requirement workflow and in early
analysis when details about the communication are not know
or not considered relevant in the diagram, but this use is not
explicitly expressed in the OMG UML specification[1].

Asynchronous: Asynchronous flow of control. The sender
does not wait for a return, but continues to execute after
sending the message.

Return: Return from a procedural call. The return arrow may
be suppressed since it is implicit in the end of an activation.

In addition the UML Extension provides other kinds of message types:

Balking: If the receiver of the message is not immediately
ready to accept the message, the sender aborts the message
and continues.

Time-out: The sender waits for the receiver to be ready for
the message up to some fixed period of time before aborting
the message and continuing.

Unfortunately Rational Rose and Rose-RT do not completely agree
with the UML standard when it comes to messages, sequence

 Open
 MASTER’S THESIS REPORT 50 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

numbering and the use of Focus of Control. There are also a few
differences between the two tools.

Rational Rose

Rational Rose has all these types of messages (see Figure 28). The
definition of the Simple message type is however slightly different.
Rational Rose’s definition is:

 Simple: For messages with a single thread of control, one
object sends a message to a passive object.

In addition the synchronous messages have a slightly different icon.

Figure 28. Sequence diagram from Rational Rose showing simple messages (1
& 2), synchronous messages (3, 3.1 & 3.2), asynchronous messages (4 & 4.1), a
balking message (5) and a time-out message (6).

The returns from synchronous messages are not added automatically
in Rose. These must be added by hand if they should be show
explicitly.

As shown in Figure 28, Rational Rose supports hierarchical sequence
numbering where a new level is added to the numbers whenever a
nested call is made (3 & 3.1).

Rational Rose can also specify that a message should be sent
periodically.

The sequence numbers in Rational Rose do not contain thread names
(e.g. A, B, C), which is a great disadvantage when modeling
concurrency.

Rational Rose-RT

Rational Rose-RT only has three different sorts of messages:

Asynchronous send: Used when a Capsule sends an
asynchronous message to another Capsule.

 Open
 MASTER’S THESIS REPORT 51 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Synchronous send: Used when a Capsule sends a
synchronous call to another Capsule.

 Synchronous call: Used when a call to a (passive) class is
made.

Figure 29 shows examples of the different message types. In Rational
Rose-RT the return message is always shown when a synchronous
message is sent.

Figure 29. Sequence diagram from Rational Rose-RT showing the different
message types and the sequence numbering.

As mentioned earlier, Co-regions can be used in Rational Rose-RT to
obtain thread names (see Figure 23).

Guideline 16: Use Co-Regions to obtain thread identifiers in Sequence diagrams in Rational
Rose-RT.

Guideline 17: Use Collaboration diagrams with thread identifiers in order to model the
structure of the thread mechanisms.

Focus of Control and nested flows in Rational Rose and Rose-RT

A comparison between the Focus of Control in Rational Rose and
Rose-RT will show that they differ. One difference is that Rational
Rose-RT does not show Focus of Control on the lifeline of the sending
object. Another difference appears in connection with asynchronous
messages and nested flow (see Figure 30).

 Open
 MASTER’S THESIS REPORT 52 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

a) b)

Figure 30. a) Sequence diagram from Rational Rose showing asynchronous
messages with flat flow of control (1 & 2) and with nested flow of control (3 &
3.1). b) Sequence diagram from Rational Rose-RT showing asynchronous
messages with flat flow of control (1 & 2) and with nested flow of control (2 &
2.1).

From the use of Focus of Control and nested flow it seems like
Rational Rose and Rose-RT have two different definitions of nested
flow:

A. When the sender sends a message with nested flow the sender
must wait for the receiver to finish before continuing (same as
synchronous synchronization). This definition would make it
incorrect to use nested flow in connection to asynchronous
messages (messages 3 and 3.1 in Figure 30a).

B. When two messages are sent with nested flow of control, it means
that the second message is sent as a response to the first
message. The sender is not forced to wait for the receiver to finish
(unless the communication is synchronous). This would mean that
it is allowed to use nested flow of control in connection with
asynchronous messages (message 2 and 2.1 in Figure 30b).

The OMG UML specification does not explicitly provide a definition of
nested flow of control, but when describing the notation of the different
message types (provided above) it seems as if they use definition A. In
the Rational Rose-RT Exercise WorkBook from Rational [14], definition
B is used.

Guideline 18: When using Rose, use definition A of nested flow of control, i.e. do not use
nested flow in connection with asynchronous messages.

Guideline 19: When using Rational Rose-RT, use definition B as that definition better
correspond to the sequence diagrams generated by Rational Rose-RT during
test of the system.

 Open
 MASTER’S THESIS REPORT 53 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

4.2.3 Design Elements, Use Case Design, Distribution and Run-Time
Architecture

The analysis classes and analysis roles, in turn, evolve into a number
of different design elements. These design elements are found by
further analyzing the interaction between the analysis classes. During
the Use Case design interactions in the Use Case realizations are
refined together with the requirements on the operations of classes,
subsystems and Capsules. If a distributed system is modeled, a
description of how the functionality of the system is distributed across
physical nodes also must be added. When considering the run-time
architecture one should among others identify processes, inter-process
communication (thread synchronization) and process life cycles,
analyze resource sharing and distribute model elements among
processes.

The design elements that are the main focus in a real-time system is of
course Active classes or Capsules. RUP’s advice is to consider
Capsules whenever there is concurrency in the problem domain. To do
this, it is expected that Rational Rose-RT is used as design tool. In
Rational Rose, concurrency is modeled with classes stereotyped as
<<active>>.

PDP_Context

<<activ e>>a) b)

Figure 31. a) Active class from Rational Rose. b) Capsule from Rational Rose-
RT.

A control class from the Analysis model often evolves into one or
several active classes.

4.2.3.1 Designing with Active classes

An active object owns a thread of control and may initiate activity.
Processes and tasks are traditional kinds of active objects. A role for
an active object is shown as a rectangle with heavy border. It can also
be indicated by the stereotype <<active>>. In Rational Rose
concurrency of a class is set to active in the Class Specification, but
this do not automatically give the class the <<active>> stereotype, the
stereotype has to be set manually.

Active objects are often composites, i.e. one object contains one or
several other objects (components) (see Figure 32). These
components can be seen as aggregations by value. The composite
object is responsible for the creation and destruction of its component
objects. The concurrency within an active object can be distributed

 Open
 MASTER’S THESIS REPORT 54 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

completely to its components, where each component19 is responsible
for one thread of control.

Payload Up li nk
<<active>>

PDP_Cont ext
<<active>>

Payloa d Downl ink
<<active>>

Figure 32. Class diagram from Rose showing an active class “PDP_Context”
with the composite objects “Payload Uplink” and Payload Downlink”.

4.2.3.2 Designing with Capsules

Capsules are Rational Rose-RT’s correspondence to active classes.
Each Capsule is described by a state machine and is hence reactive.

Concurrency within a Capsule is completely distributed to its
components, Subcapsules. This means that a Capsule’s state machine
cannot contain concurrent states, instead Subcapsules that have their
own state machines handle concurrent flows of control. We will try to
elucidate this with an example:

Example VI: Figure 33 shows two freestanding Capsules, CapsuleA and CapsuleB . The
concurrent behavior of CapsuleA is distributed to CapsuleA1 and CapsuleA2,
which are Subcapsules to CapsuleA . The behavior of the two roles
CapsuleA1Role1 and CapsuleA1Role2 are identical since they are specified by
identical instances of the state machine of CapsuleA1.

19 This component can in turn be a composite object with several threads of control distributed to components.

 Open
 MASTER’S THESIS REPORT 55 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

a) b)

Figure 33. a) Class diagram from Rational Rose-RT containing two freestanding
Capsules CapsuleA and CapsuleB . CapsuleA1 and CapsuleA2 are Subcapsules
to CapsuleA . b) Structure diagram from Rational Rose-RT showing the internal
structure of CapsuleA (no ports have been added).

From Use Case state machines to Capsules and Protocols

As mentioned earlier, finding Capsules from the analysis roles is a
difficult process and the advises and guidelines on how to proceed are
limited. Another approach that we found very effective and that
simplified the development of Capsules was to focus on the state
machines in the Use Case model and develop the Capsules top-down.
The development starts with one main Capsule. Since Capsules can
only encapsulate one thread of control, a new independent Capsule or
a Subcapsule is needed whenever concurrent activities must be
performed. The approach is exemplified in Figure 34 and it shows the
Use Case “GGSN Startup” for GGSN-Light. The main Capsule
corresponds to the entire system "GGSN". Concurrent activities must
be performed during the startup of the subsystems. This responsibility
is hence placed on two Subcapsules in "GGSN". These two
Subcapsules each have their own state machine that specifies what
must be done during the startup of the subsystems.

The functionality of the system is then extended through several
iterations. In the early iterations the Protocols will be on a high level
and will only define events or messages. In later iterations they will
evolve into more concrete Protocols that define signals and data.

 Open
 MASTER’S THESIS REPORT 56 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

6WDUWXS

%URDGFDVW

,3B$GGUHVVHV

,QIRUP DERXW

**61

6\QFStartup of
Subsystem

**61

��&DSVXOH!!

&RQWUROB6\VWHPB+DQGOHU

��&DSVXOH!!

���

7UDQVPLVVLRQB6\VWHPB+DQGOHU

��&DSVXOH!!

���

3RZHUB2QB3UHVVHG3RZHUB2QB3UHVVHG

,GOH

3'3B&RQWH[WB'HDFWLYDWLRQ

3'3B&RQWH[WB$FWLYDWLRQ

3'3B&RQWH[WB'HDFWLYDWLRQ

3'3B&RQWH[WB$FWLYDWLRQ

Start

GGSN Startup

Startup of subsystems

Startup In Transmission
System

Startup In
Control System

Inform about
GGSN

Broadcast IP
Address

Startup of subsystems

Startup In Transmission
System

Startup In
Control System

Startup In Transmission
System

Startup In
Control System

Inform about
GGSN

Broadcast IP
Address

Idle

Figure 34. To the right: The state machines for Use Case “Start_GGSN”. To the
left: The corresponding Capsule of the Use Case and the state machine for
Capsule “GGSN”.

The state machine in Figure 34 is simplified and shows only the
significant behavior of GGSN-Light, and not the behavior of its
aggregated roles.

4.2.3.3 Object creation and destruction

As mentioned earlier a composite class is responsible for the creation
and destruction of its components. Commonly all components are
created/destroyed at the same time as the composite class itself is
created/destroyed, but this is not always the case. Rational Rose-RT
can, for each component, choose if it shall be fixed, optional, or a plug-
in.

Fixed: One (or more, depending on the cardinality) instance of the
Capsule is automatically created when the container Capsule is
initialized.

 Open
 MASTER’S THESIS REPORT 57 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Optional: The container class must explicitly instantiate the Capsule
role within the detailed code of the container Capsule state machine.

Plug-In: A Capsule role is never directly instantiated, but rather an
already existing instantiation from another Capsule decomposition is
imported into the role. That is, an existing Capsule is dynamically
"plugged in" to the specified role under the program control of the
container class. The container class state machine must explicitly
request the plug-in of a Capsule at run-time within the detailed code.

In Rational Rose-RT’s Sequence diagrams special types of messages
show the creation and destruction of objects/instances. When
dynamically creating instances the lifelines of the created instances
begin further down on the Sequence diagram. A cross visualizes the
destruction of an instance.

Figure 35. Sequence diagram from Rational Rose-RT showing the dynamic
creation (1) and destruction (3) of a Capsule Role.

4.2.3.4 Thread synchronization

Resource sharing can be seen as a case of the more general problem
of thread synchronization. We already introduced the most common
strategies for synchronization (asynchronous, synchronous, balking
and timed-waiting) when we described the different message types in
Chapter 4.2.2.

When executing a Rational Rose-RT model a Service Layer is used
between the model and the operating system. This layer handles the
messaging and the queues for messages and events. It is also
responsible for the startup of the execution of the Capsules state

 Open
 MASTER’S THESIS REPORT 58 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

machines. When an event triggers a sequence in a Capsule this
sequence is executed without interruptions (run-to-completion). Events
that are generated during the execution of the sequence are queued
up in the Service Layer. Together with the fact, that ports are the only
interface to the Capsules environment, this gives the Capsules a built-
in semantic for mutual exclusion. Encapsulating them in Capsules can
hence automatically guard resources.

When designing with standard UML, mutual exclusion must be
explicitly designed, e.g. by the use of specific patterns. There are a lot
of different design patters that solves the problems with thread
synchronization and resource sharing available in today’s literature.
Some examples on design patterns that could be helpful when working
with thread synchronization are:

• Design Patterns: Elements of Reusable Object-Oriented Software,
[18].

• “Strategized Locking”, [22]. Parameterizes synchronization
mechanisms that protect a component’s critical sections from
concurrent access.

• “Rendezvous Pattern”, [5] & [19], that allows synchronization of
concurrent tasks.

An example of a state pattern is the "Barrier State Pattern" [19] that
handles thread synchronization. If the underlying ROTS do not support
them, they can be constructed with the help of this pattern. The pattern
is used in Figure 34 for synchronization of the two threads:
“Transmission_System_Handler” and “Control_System_Handler”. The
figure below shows how the pattern works when three threads are
synchronized.

 Open
 MASTER’S THESIS REPORT 59 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Task 1

exit/ ^Ready

Task 2

exit/ ^Ready

Task 3

exit/ ^Ready
Waiting for

Ready

Ready /
No_Of_Not_Ready--;

[No_Of_Not_Ready>0]

Stop

[No_Of_Not_Ready=0]
^Go

Wait Wait Wait

Task 4

Go
Go

Go

 / No_Of_Not_Ready =3;

Wait Wait Wait

Join
Join

Task 1 Task 2 Task 3

Task 4

Figure 36. Construction of a Barrier for Thread Synchronization of 3 different
threads.

4.2.3.5 Scheduling

The scheduling is done by the operating system, but can be controlled
by the developer through priorities and by setting parameters of the
scheduling algorithm. Rational Rose-RT gives the possibility to specify
the priorities of the messages.

4.2.3.6 Distribution

Real-time systems are often distributed. Deployment diagrams are
used to model the distribution of processes, components and devises
to processing nodes. The deployment diagram in turn uses
components from a Component diagram that shows compiler and run-
time dependencies between software components.

4.3 IMPLEMENTATION WORKFLOW

The implementation of the model can be done either manually or by
code generation.

Using standard UML, manual implementation is easy in the sense that
classes, attributes and methods map directly to classes, attributes and
methods in common object oriented programming languages.
Implementing a UML-RT model manually, on the other hand, is
significantly more complex because of the complex realization of

 Open
 MASTER’S THESIS REPORT 60 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Capsules, Ports and Protocols. Information on how this realization can
be done is available in [6].

Rational Rose and Rose-RT both support generation of code, but not
to the same extent. In Rose, classes, attributes, and aggregations,
among others, are generated. The methods are produced as skeletons
that have to be completed by manual programming in the source code
files. In Rational Rose-RT a complete implementation is generated.
Implementation details are still necessary, but they are added directly
within the model framework and not in the source code files.

4.4 TEST WORKFLOW

The advantage of Rational Rose-RT in the test workflow is that the
model can be executed and verified within the tool. Monitors of the
Capsule instances state machine and structure are available, which
makes it possible to follow the state transitions and dynamic changes
in the structure during the execution. These possibilities are not
available in Rational Rose.

 Open
 MASTER’S THESIS REPORT 61 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

5 HOW WILL RUP BE AFFECTED

As mentioned earlier RUP has some limitations when it comes to
modeling of real-time systems. One of the main limitations is the choice
in the analysis and design workflow, where designers have to choose
between “Design Components” and “Design Real-Time Components”,
see Figure 37. The guards at this choice are [Non Real-Time] and
[Real-Time], but RUP does not provide any definition or explanation of
what is considered to be Real-Time. In addition, RUP does not explain
how to model real-time systems without Capsules and Protocols.

Figure 37. Part of the analysis and design workflow from the ERV RUP
adaptation with the choice between “Design Components” and “Design Real-
Time Components”.

During our modeling work with the GGSN-Light we have also found
that not all stages in the RUP process are fully adapted to the
development of Capsules and Protocols. In the Use Case and Analysis
model, for example, activities and artifacts can be added and existing
activities and artifacts can be modified in order to make the
development of Capsules and Protocols easier and more effective.

We here present the possibilities (that we have discovered during our
modeling work) to modify and enlarge parts of the RUP workflows in
order to improve the modeling of real-time systems. The activities and
artifacts that have been added or modified are listed in chapter 5.4.
Apart from this, the analysis and design workflow in this “new” model
contains three different tracks shown in Figure 38, marked with broad,
gray arrows. The figure also shows the points of choice in the three
different workflows, guarded by guards, surrounded by []20.

Track 3 is suited for systems with high degree of concurrency, systems
in need of an early evaluation or prototyping. The prototyping can be

20 [] surrounding the guard condition, [guard condition] , is OCL standard.

 Open
 MASTER’S THESIS REPORT 62 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

performed in parallel with or prior to the more careful modeling of the
system (track 1 and 2) or can for small systems and systems that are
not in need of a deep analysis be used instead of track 1 and 2. Track
1 and 2 include a more exhaustive and well-defined analysis than track
3. Furthermore, track 1 uses standard UML only, while track 2 and 3
includes UML-RT. Track 3 is a distinct top-down, “state machine
driven” development process, where testing with the help of Rational
Rose-RT can be started at an early stage of the process.

Track 3 : Design of
real-time
components based
on State Machines
from Use Case
model

Track 2 : Design
of real-time
components

Track 1 : Design of
non-real-time
components

Design Real-Time
Components

[Analysis Classes with
Non-State behavior]

[Analysis Classes
with State behavior]

Design Components

Analyze Behavior

Refine Architecture

[Early Elaboration
Iteration]

Define a Candidate
Architecture

Analyze Use Case
with State Machines

[Prototyping ready
or Design
Complete]

[More
Iterations]

Design Real-Time
Components

[Complex system] [Prototyping OR
Design of real-time
components]

Figure 38. The three different tracks presented and discussed in this report.

Chapters 5.1 to 5.3 give a presentation of the three tracks and provide
checklists for the different guards in the tracks. The checklists list
important issues that must be taken under consideration when entering
the track in question. The checklists contain aspects that speak in favor
or against choosing the topical path. Most systems and projects
contain aspects from both categories. In these cases the developers
have to compare the different aspects and decide which are the most
important.

 Open
 MASTER’S THESIS REPORT 63 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

5.1 TRACK 1: DEEP ANALYSIS AND DESIGN OF NON-REAL-TIME
COMPONENTS

This track corresponds to the process mostly used by companies that
follow RUP today. The development process uses only standard UML
and does not include the concept of Capsules and Protocols from
UML-RT. The process produces a design model where control in the
system is represented by classes stereotyped as <<active>>. Methods
and attributes of the classes in this model map clearly to methods and
attributes in the source code, which makes the model easy to
implement even if the code is not automatically generated (see
Implementation, 4.3).

There are two guards along this track:

1. [Complex system]

2. [Analysis Classes without State behavior]

[Prototyping OR
Parallel design of
real-time
components]

[Prototyping OR
Design of real-time
components]

Figure 39. The analysis and design workflow where behavior is analyzed with
Analysis classes or Roles and design is done with classes. This is track 1 in
Figure 38.

The first guard, [Complex system], has been inserted into the workflow
so that developers of prototypes and smaller systems can choose to
take track 3 only, i.e. to skip the more exhaustive analysis that comes
with track 1 and 2. This is of course seldom the case for real-time
systems and we think developers of complex real-time systems should

 Open
 MASTER’S THESIS REPORT 64 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

always choose track 1 or 2, but they can also choose track 3 in parallel
with track 1 or 2 for prototyping, early tests or to make the design of
real-time components (Capsules) easier and more straightforward.

The path that follows track 1 and 2 involves an exhaustive analysis,
which is often needed for large complex systems. The analysis here is
clearly defined and has detailed guidelines in RUP. The path leaves
the choice between automatic code generation and manual
implementation open, but if the project because of certain limitation
cannot generate code (e.g. because of the programming languages
supported) then it is strongly recommended to choose this path. This
path is the only possible if you want to completely follow Standard UML
or do not want to put work into learning about UML-RT and the
Capsule and Protocol concept.

The following checklist summarizes these important issues:

Checklist: Guard [Complex system]

This is the only possible path (track 1 & 2) if:
T you want to completely follow standard UML. (NB: This will further

on lead you into track 1)
T you do not want to put any work into learning about the concept

of Capsules and Protocols. (NB: This will further on lead you into
track 1).

Aspects that speak in favor of this path (track 1 & 2):
T the system is in need of deep and exhaustive analysis
T you are developing a non-prototype model
T you cannot afford the reduction in the performance that the

Rational Rose-RT Service Library involves. (NB: This will
further on lead you into track 1)

You can choose this path (track 1& 2):
T whether or not you are designing a system with a high degree of

concurrency
T whether or not you want to generate code automatically
T whether or not you have the need to strictly specify the possible

communication between objects in the system

You should not choose this path (track 1& 2):
T if you only want to explore the system
T if you want an early evaluation of the system

The second guard, [Analysis Classes without State behavior],
separates track 1 from track 2. The guard-name “Analysis Classes
without State behavior” does not imply that it is impossible to model
systems with state behavior in track 1. To achieve the best results,

 Open
 MASTER’S THESIS REPORT 65 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

systems without state behavior should be modeled by following track 1
and systems with state behavior should be modeled by following
track 2. But if the project because of other restrictions is forced to take
track 1, it is still possible even if the system has state behavior.

Taking track 1, the system will completely follow Standard UML and
control in the system will be modeled by classes stereotyped as
<<active>>. The concepts from UML-RT will not be used. If you do not
want or cannot use automatic code generation this track is
recommended. Manual implementation is easy in the sense that
classes, attributes and methods map directly to classes, attributes and
methods in common object oriented programming languages (as
mentioned in chapter 4.3). Since UML-RT strictly specifies the possible
communication between objects you should rather take track 2 if this is
important and nothing else prevents you from taking this track.

The following checklist summarizes these important issues:

Checklist: Guard [Analysis Classes without State behavior]

This is the only possible path (track 1) if:
T you want to completely follow standard UML
T you do not want to put any work into learning about the

concept of UML-RT.

Aspects that speak in favor of this path (track 1):
T the significant Analysis Classes/Roles of the system reacts on

calls independent of the condition or state of the Analysis
Class/Role

T you do not want to generate code automatically.

Aspects that speak against this path (track 1):
T you have the need to strictly specify the possible

communication between objects in the system

5.2 TRACK 2: DEEP ANALYSIS AND DESIGN OF REAL-TIME
COMPONENTS

This development track uses UML-RT (Capsules and Protocols) and is
suited for complex systems with a high degree of concurrency. It
contains an exhaustive analysis (just as track 1) that can be performed
with analysis classes or analysis roles.

There are two guards along this track:

1. [Complex system]

2. [Analysis Classes with State behavior]

 Open
 MASTER’S THESIS REPORT 66 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

[Prototyping OR
Parallel design of
real-time
components]

[Prototyping OR
Design of real-time
components]

Figure 40. The analysis and design process workflow where analysis is done
with Roles or Analysis Classes and design is done with Capsules and
Protocols. This is Track 2 in Figure 38.

The first guard, [Complex system], is the same as for track 1 and is
explained in chapter 5.1.

The second guard, [Analysis Classes with State behavior], separates
track 2 from track 1. Track 2 should be followed when the system has a
high degree of concurrency and important Analysis classes have state
behavior. Since the communication between Capsules is strictly
specified (see chapter 4.3) and they have a built-in mutual exclusion
semantics, track 2 is recommended if you want to take advantage of
this. As mentioned in the previous chapter it can be better to take
track 1 if you do not want to or cannot generate code automatically,
since it is very complicated to implement Capsules and Protocols
manually.

Capsules have run-to-completion semantics, which means that when
an event is received, it is completely processed regardless of the
number or priority of other events arriving (see chapter 4.2.3.4). In
addition, the implementation uses a Service Library that includes some
reductions in the performance of the system. Both of these properties
must be regarded when choosing track 2.

 Open
 MASTER’S THESIS REPORT 67 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

The following checklist summarizes these important issues:

Checklist: Guard [Analysis Classes with State behavior]

Aspects that speak in favor of this path (track 2):
T you are designing a system with a high degree of concurrency
T the significant Analysis classes/Roles of the system have state

behavior, i.e. the system’s reaction on calls and events depends
on the condition or state of the system

T you have the need to strictly specify the possible
communication between objects in the system

T you want built-in mutual exclusion semantics in the objects

Aspects that speak against this path (track 2):
T you do not want to automatically generate code
T you do not want to have “run-to-completion” semantics
T you cannot afford the reduction in the performance that the

Service Library involve

You should not choose this path (track 2):
T if you only want to explore the system
T if you want to verify the system immediately

It is not possible to choose this path (track 2) if:
T you want to completely follow standard UML

 Open
 MASTER’S THESIS REPORT 68 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

5.3 TRACK 3: ANALYZE USE CASE WITH STATE MACHINES AND
DESIGN OF REAL-TIME COMPONENTS

In track 3 Use Cases are described by state machines during analysis
and result in a system containing Capsules and Protocols through a
top-down development process. The process is adjusted after the
abilities and limitations of Rational Rose-RT. It takes advantage of the
possibility of testing in early stages of the development and takes in
consideration that Rational Rose-RT has limited support for analysis.
The analysis in this track is in other words not as exhaustive as in track
1 and 2. These properties of the track makes it suitable for prototyping
and exploration of new systems. This track also makes the design of
real-time components (Capsules) easier and more straightforward and
it can therefore be good to use in parallel with track 1 and 2.

The track introduces a new activity “Analyze Use Cases with State
machines” described in chapter 5.4.2.

The only guard along this track is:

1. [Prototyping OR Design of real-time components]

[Prototyping OR
Parallel design of
real-time
components]

[Prototyping OR
Design of real-time
components]

Figure 41. The analysis and design workflow where analysis is done with state
machines and design with Capsules and Protocols directly from the state
machines in the Use Case model. This is Track 3 in Figure 38.

 Open
 MASTER’S THESIS REPORT 69 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

The point of start will be to analyze each Use Case in order to find out
its parallel behavior and its relations to other Use Cases; this is
described more in 4.1.1.3. Then each state machine is assigned to a
Capsule or Capsule role, this is described more in chapter 4.2.3.2.
Starting with state machines, it is an easy process to go from Use
Case to Code. It is also easy to follow the requirements from Use Case
to Code.

The following checklist summarizes these important issues:

Checklist: Guard [Prototyping OR Design of real-time components]

Aspects that speak in favor of this path (track 3):
T you are modeling a simple system
T you are developing and evaluating a prototype system
T the system has state behavior, i.e. the system’s reaction on calls

and events depends on the condition or state of the system
T you want to be able to make tests early in the development
T you have the need to strictly specify the possible

communication between objects in the system
T you want built-in mutual exclusion semantics in the objects

Aspects that speak against this path (track 3):
T the system is in need of deep and exhaustive analysis
T you are developing a non-prototype model
T you are not designing a system with a high degree of

concurrency
T you do not want to have “run-to-completion” semantics
T you do not want to automatically generate code
T you do not want to put any work into learning about the concept

of Capsules and Protocols
T you cannot afford the reduction in the performance that the

Service Library involves

It is not possible to choose this path (track 3) if:
T you want to completely follow standard UML

This development workflow starts with the system as top-Capsule and
then that Capsule gradually evolves into a prototype. After rather small
efforts it is still possible to explore the problems with the system,
especially architectural issues.

Guideline 20: During prototyping, use Capsules based on Use Case state machines to
explore the system. This will give you an early understanding of architectural
and domain problems.

 Open
 MASTER’S THESIS REPORT 70 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

5.4 MODIFIED AND ADDED ACTIVITIES AND ARTIFACTS

The most extensive changes have been made to the activities in the
analysis and design workflow. In the requirements workflow a few
artifacts have been included in the existing activities.

5.4.1 The Requirements Workflow

In the requirements workflow, the “Detail a Use Case” activity
(performed in “Refine the System Definition”, see Figure 42) can be
extended so that it also includes the production of Statechart diagrams
for Use Cases (see 4.1.1.3).

Figure 42. The RUP activity “Detail a Use Case” that is performed in the “Refine
the System Definition” in the requirements workflow.

The following guidelines can also be added to this activity:

Guideline 1: Use OCL to collect and visualize non-functional requirements in Use Case
diagrams as OCL-expressions are unambiguous and can be used to verify
the Use Cases.

Guideline 2: Use Sequence diagrams to show Main and Alternative flows of Use Cases as
they show the flows in a clear and unambiguous way.

Guideline 3: Show no more than the system as a “black-box” together with the Use Cases’
actors in the Sequence diagrams during the requirement workflow.

Guideline 4: Use OCL in Use Case Sequence diagrams to model timeliness requirements
like response time, deadlines, throughput and so on. They provide, among
others, an aid during the verification of the Use Case.

5.4.2 The Analysis and Design Workflow

Statechart diagrams should also be produced when making the
supplementary Use Case descriptions in order to explore concurrency
within and among Use Cases. This is done in the activity “Use Case
Analysis” (that is performed in “Define a Candidate Architecture” and
“Analyze Behavior”, see Figure 43) in the analysis and design
workflow.

 Open
 MASTER’S THESIS REPORT 71 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Figure 43. The RUP activity “Use Case Analysis” that is performed in the
“Define a Candidate Architecture” and the “Analyze Behavior” in the analysis
and design workflow.

The guidelines that concern supplementary Use Case descriptions and
that should be added to this activity is:

Guideline 7: Sequence diagrams describing Use Case behavior should not focus on
execution control. In a real-time system, dealing with concurrency, use the
Sequence diagram format that contains several possible sequences in the
same diagram.

Guideline 9: Only show Use Case states in the Sequence diagram if the Use Case
behavior also is described in Statechart diagrams.

Guideline 10: For systems with a high degree of concurrency, use state machines when
analyzing Use Cases in order to make the transformation from Use Case
Model to Design Model easier.

Guideline 11: Use state machines to specify the behavior of the system to verify the pre-
and post-conditions of the different Use Cases.

Guideline 12: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies within Use Cases.

Guideline 13: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies among Use Cases.

Guideline 15: When describing Use Case behavior with state machines in Rational Rose,
use the Activity diagram as a means for finding the systems states.

In the “Use Case Analysis” activity you also find the Analysis Classes
of the system and then distribute the Use Case behavior to these
classes. Since UML-RT introduces the concept of Analysis Roles, this
activity should be extended with a definition of Roles and guidelines on
how to best find the different Roles in the system. Unfortunately, we
have not found enough information about Roles and have not been
able to put enough work into the modeling with Roles, to be able to
present guidelines in this area. The modeling work that we did do
showed that the analysis with analysis classes and the analysis with

 Open
 MASTER’S THESIS REPORT 72 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

roles resulted in fairly similar systems. The advantage of the analysis
classes was that we could clearly see which classes that where control
classes, boundary classes and entity classes. When using Roles, no
similar types exist. The advantage of Roles is that this is the analysis
method supported by Rational Rose-RT. You can still use analysis
classes in Rational Rose-RT.

Readers that are not familiar with RUP should note that the activity
“Design Components” (see Figure 44) does not lead to a system
without real-time components. The difference between “Design
Components” and “Design Real-Time Components” is that “Design
Components” does not involve the UML-RT concepts (Capsules and
Protocols).

Figure 44. The RUP “Design Components” and “Design Real-Time
Components” activities from the analysis and design workflow.

The following guidelines can be added to the “Describe the Run-Time
Architecture” activity performed in “Refine the Architecture” in the
analysis and design workflow (see Figure 45):

Guideline 16: Use Co-Regions to obtain thread identifiers in Sequence diagrams in Rational
Rose-RT.

Guideline 17: Use Collaboration diagrams with thread identifiers in order to model the
structure of the thread mechanisms.

Figure 45. The RUP “Describe the Run-Time Architecture” activity performed in
“Refine the Architecture” in the analysis and design workflow.

The “Analyze Use Cases with state machines” has been added as an
activity in track 3. Since this is a completely new activity in RUP we
here present the steps that should be performed during the activity.

 Open
 MASTER’S THESIS REPORT 73 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

Analyze Use Case with
State Machines

Figure 46. The new activity: “Analyze Use Case with State Machines” from the
new track in the Analysis and Design workflow.

The purpose with this activity is to use the benefits of UML-RT and
Rational Rose-RT. It includes an early exploration of relations and
concurrency within and among the Use Cases.

The steps are:

1. Find the pre-and post conditions for the system during the Use
Cases.

2. For each Use Case, find conditions for the system that should be
fulfilled during the whole Use Case, let this be “Superstate” for the
system during that Use Case.

3. Build a state machine for the system for each Use Case.

4. Put these state machines together into one state machine for the
whole system.

Input artifact: Use Case.

Output artifacts: Use Case Realization and Statechart diagrams for
each Use Case and for the whole system.

Worker: System analyst, (Architect).

The following guidelines can be added to this activity:

Guideline 11: Use state machines to specify the behavior of the system to verify the pre-
and post-conditions of the different Use Cases.

Guideline 12: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies within Use Cases.

Guideline 13: Use Statechart and Activity diagrams to describe Use Cases in order to
visualize and elaborate concurrency and dependencies among Use Cases.

Guideline 14: When making Statechart diagrams for Use Cases concentrate only on the
states of the entire system and not on the states of different subsystems.

Guideline 15: When describing Use Case behavior with state machines in Rational Rose,
use the Activity diagram as a means for finding the systems states.

Guideline 20: During prototyping, use Capsules based on Use Case state machines to
explore the system. This will give you an early understanding of architectural
and domain problems.

 Open
 MASTER’S THESIS REPORT 74 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

6 SUMMARY AND CONCLUSIONS

This chapter provides a summary of how UML and UML-RT can be
used for modeling of real-time systems. It also includes a summary of
the advantages and disadvantages of Rational Rose and Rose-RT and
the modifications that can be done to RUP to make it better suited for
development of real-time systems with the tools Rational Rose and
Rose-RT.

6.1 UML AND UML-RT FOR MODELING OF REAL-TIME SYSTEMS

During the modeling of our evaluation model, GGSN-Light, we have
found several different ways to improve the modeling work. The most
powerful possibilities that UML and UML-RT provides for the modeling
of real-time systems are:

• Non-functional/QoS requirements can be added to the model with
the use of OCL (Object Constraint Language). OCL provides an
unambiguous specification of the requirements and can also be
used to verify the model. OCL can be used in all of the UML
diagrams.

• Timeliness requirements are of great importance in real-time
systems. Since sequence diagrams focuses on time they are,
together with OCL, well suited for capturing of timeliness
requirements.

• State machines for specification of Use Cases makes it possible to
show concurrency within and among Use Cases. They also makes
the transformation from the Use Case model to the Design model
easier and the design of real-time components (Capsules)
straightforward.

• In systems with a high degree of concurrency, Capsules and
Protocols decreases the risk for software-errors like deadlock and
sharing problems, among others. The use of ports and protocols
limits the communication to the channels specified in the
architectural model.

• Thread identifiers included in the sequence numbering in
Sequence and Collaboration diagrams can be used to show
concurrency and synchronization.

 Open
 MASTER’S THESIS REPORT 75 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

6.2 ADVANTAGES AND DISADVANTAGES OF RATIONAL ROSE AND
ROSE-RT

The following table summarizes the advantages and disadvantages of
Rational Rose and Rose-RT:

Table 1. Advantages and disadvantages of Rational Rose and Rose-RT.

Rational Rose Rational Rose-RT

General

+ Fully follows the UML standard. − Focuses on design and is not fully
suited for requirements modeling.

− Generates code that must be
completed manually.

− Do not fully follow the UML standard.

+ The analysis class stereotypes
<<active>>, <<boundary>> and
<<entity>> are part of the tool’s base
stereotypes.

+ Generates complete code.

− OCL constraints cannot be directly
connected to the model entities.

− You have to create the stereotypes and
icons for the analysis classes yourself.

+ OCL constraints directly in the model.

+ Verification of the model.

Sequence Diagrams

+ Has support for balking and time-out
messages.

+ Easier to work with when it comes to
messages and Focus of Control.

− Cannot show concurrency within an
instance.

+ Can show concurrent activities within
an instance.

− Does not use thread names. + Supports Co-Regions and Local
actions.

+ Messages can be drawn to/from
boundary without specifying the
receiver/sender.

+ Dynamic creation/destruction of object
instances is shown explicitly in the
diagrams.

+ Supports states in the sequence
diagrams.

Statechart Diagrams

+ Supports concurrency in Statechart
diagrams.

− Does not support concurrency in
Statechart diagrams, which is a
disadvantage during requirements and
analysis phases.

Activity Diagrams

+ Supports activity diagrams with parallel
actions and means for synchronization.

− Does not support activity diagrams at
all.

 Open
 MASTER’S THESIS REPORT 76 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

6.3 MODIFICATIONS TO RUP

We have also made some modifications to RUP that makes it better
suited for development of real-time systems with the tools Rational
Rose and Rose-RT. The most important are:

• A clearer guard for the choice between “Design of Real-Time and
Non-Real-Time Components.

• A new track that takes advantage of the possibilities of Rational
Rose-RT. This track is suited for prototyping and early verification
and minimizes the step from Use Case model to Design model.

• Checklists have been added to guide the developers in the choice
between the different paths in the process.

 Open
 MASTER’S THESIS REPORT 77 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

7 DISCUSSION AND FUTURE WORK

In software development, UML combined with real-time modeling is a
fairly new area. There are a lot of opportunities to explore and we will
here present some possibilities to expand this work together with some
reflections on our work.

7.1 REFLECTIONS ON OUR METHODOLOGY AND WORK

Overall our work has gone smoothly, much because of the good
support from our supervisors at ERV and Chalmers. Unfortunately the
time frame did not allow us to fully evaluate the effects of the different
modeling techniques and the lack of system knowledge (of GGSN and
GPRS) made it hard for us to decide which modeling technique that in
the end resulted in the better system. We still feel that we have found
many ways to improve the modeling techniques used for modeling of
real-time systems today.

The choice to use all the different diagrams supported by UML in all
the phases of the development process proved to be successful. This
made it possible for us to among others explore the benefits of
Statechart diagrams in the Use Case model. It also resulted in the
development of “Track 3”.

We developed and worked according to the process described in
Figure 47.

Summarize

EvaluationPreStudy Execution
[More

Iterations]

PlanStartup

Plan

Figure 47. The process developed for and used during our thesis work.

During startup we got acquainted with Rational Rose, Rose-RT and
other tools needed during the thesis work. We also began to look at
the UML-RT concepts: Capsules, Ports and Protocols.

During plan we updated the general specification of the thesis work
with a more detailed time plan and a description of the purpose, scoop
and limitations. At first, the execution and evaluation phases were not
iterative, but as the work progressed we improved the process by
adding iterations to get faster feedback on our work and to get the
possibility to change focus.

 Open
 MASTER’S THESIS REPORT 78 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

During the pre-study we defined the system that served as an
evaluation model during the thesis work. It was important for ERV that
the evaluation model had a nomenclature that is connected to the
GSN-projects. To achieve this we took a node well known to the
project, changed it and reduced it in order to get a system small
enough to model that still collected significant real-time requirements.
This was something that could have been done better, a lot of effort
was put into the work to understand the system (GGSN and GPRS)
and to adapt it. Another approach could have been to model an
elevator system instead; this is a small system with a lot of real-time
requirements.

During the pre-study we also studied different theories in relevant
reports, articles and books. We studied the possibilities that UML and
other languages provide and how these can be implemented in RUP
and the tools used. The area (UML modeling of real-time systems) is a
new area with a lot of different theories and difficulties. Therefor it was
a good thing to spend a lot of time in the pre-study phase (about 30%
of total time) and after that test and evaluate the different theories in an
iterative process.

7.2 TECHNICAL ABILITIES OF DIFFERENT TOOLS

As mentioned in the introduction to this report we have focused on
modeling methodology and have not considered the tools more
"technical" abilities, as for example the support for reverse-
engineering, round-trip, different programming languages and
frameworks and the ability to interface to other tools.

LMC (Ericsson in Canada) has made an evaluation of the technical
abilities of a number of visual modeling tools that are available
commercially today. The results are presented in a technical report [23]
(this report is only available within Ericsson). The evaluation is made
with respect to how they are suited for the development of the TelOrb
application developed by LMC. The technical abilities of the tools
Rational Rose 2000, Rose-RT 6.1, Rhapsody 2.3, Together 4.0 and
Telelogic Tau 4.0 are compared, but the report does not include a
deeper comparison between the modeling possibilities in the tools.

A deeper comparison between the modeling possibilities of the
different tools would be interesting to see, e.g. to what extent the tools
are suited for the different development phases (requirements,
analysis, design, implementation, test), if concurrency can be modeled
in Sequence and Statechart diagrams, the different types of messages
and sequence numbering that are used, if OCL can be directly
attached to modeling entities and so on.

 Open
 MASTER’S THESIS REPORT 79 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

7.3 CODE GENERATION

We have not looked further into the aspects of code generation in
Rational Rose and Rose-RT, but this will be investigated further in
another thesis work at EMW (Ericsson Microwave Systems AB,
Sweden). Contact Peter Ericsson at EMW for more information.

7.4 VERIFICATION OF OCL CONSTRAINTS

Another interesting area to look further into is the verification of OCL
constraints. One way to do this is through the implementation of
functions in Rational Rose and Rose-RT that verify constraints and
invariants that have been attached to model entities.

7.5 UML IN THE FUTURE

The OMG is currently working on a series of standard concerning real-
time applications [15]:

1. A standard that will address the issues of modeling time and time-
related facilities and services. This includes a UML profile that
defines standards paradigms of use for modeling of time,
scheduability and performance related aspects.

2. A standard for modeling fault-tolerant systems.

3. A standard for modeling the architectures of complex real-time
systems.

OMG has submitted a number of RFPs21 (Request for Proposals) for
the next UML version, UML 2.0. These are available on the OMG
homepage www.omg.com and concern the UML infrastructure and
superstructure as well as an OCL metamodel. They include important
real-time issues like communication channels, internal structure of
objects, the scalability and encapsulation of state machines and
definition of parallel execution of interaction.

21 With an RFP, OMG requests proposals on solutions that fulfill the users’ requirements.

 Open
 MASTER’S THESIS REPORT 80 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

8 REFERENCES

[1] OMG Unified Modeling Language Specification, version 1.3

[2] Rational Unified Process 5.5 (Build 12). Rational Software
Corporation.

[3] Philippe Kruchten, “The Rational Unified Process, An
Introduction”, Addison-Wesley, 1999.

[4] Bruce Powel Douglass, “Real-Time UML”, Addison-Wesley, 1998.

[5] Bruce Powel Douglass, “Real-Time UML, second edition”,
Addison-Wesley, 1999.

[6] Bran Selic, Garth Gullekson & Paul T. Ward, “Real-Time Object-
Oriented Modeling”, John Wiley & Sons, Inc. 1994.

[7] Student text: “GPRS System Survey”, EN/LZT 123 5374 R1B.

[8] Cecilia Ekelin, Jan Jonsson, “Solving Embedded System
Scheduling Problems using Constraint Programming”,
Department of Computer Engineering, Chalmers University of
Technology, Gothenburg, Sweden.

[9] Jan Jonsson, “Realtidsystem E, Föreläsning #1”, notes from
lecture #1 in Real-Time Systems, Department of Computer
Engineering, Chalmers University of Technology, Gothenburg,
Sweden.

[10] Bran Selic, Jim Rumbaugh, “Using UML for Modeling Complex
Real-Time Systems”, 1998,
www.objectime.com/otl/technical/umlrt.pdf

[11] Andrew Lyons, “UML for Real-Time Overview”, 1998,
www.objectime.com/otl/technical/umlrt_overview.pdf

[12] Ralph Melton, Software Architecture Reading Group, 1996,
www.cs.cmu.edu/afs/cs.cmu.edu/project/compose/www/sarg/feb0
5-06.html

[13] Rational Software, Rational University, Student Manual
“Developing Real-Time Software with Rational Rose RealTime”,
Volume 1, Version 1.0.

[14] Rational Software, Rational University, Exercise WorkBook
“Developing Real-Time Software with Rational Rose RealTime”,
Volume 1, Version 1.0.

[15] Bran Selic, “A Generic Framework for Modeling Resources with
UML”, IEEE.

[16] Hans-Erik Eriksson, Magnus Penker, “UML Toolkit”, John Wiley &
Sons, 1998, ISBN 0-471-19161-2.

 Open
 MASTER’S THESIS REPORT 81 (81)

 Prepared (also subject responsible if other) No.

 Magnus Antonsson, Pernilla Hansson ERV/G-01:071 Uen
 Approved Checked Date Rev Reference

 ERV/G/UE Anna Börjesson ervrowe 2001-03-26 A

C:\Mina dokument\Magnus\Office\Ex-jobb\MasterThesisReport_A.doc

[17] Craig Larman, “Applying UML and Patterns”, Prentice Hall PTR,
1998, ISBN 0-13-748880-7.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1995.

[19] Bruce Powel Douglass, “Doing Hard Time, Developing real-time
systems with UML, Objects, Frameworks, and Patterns”, Addison-
Wesley, 1999.

[20] Neil Storey, “Safety-Critical Computer Systems”, Addison-Wesley,
1996.

[21] 1/102 60-FCK 110 104, Use Case Modeling Guidelines, Ericsson
Wide Internal Guideline, PB1, 2000.

[22] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank
Buschmann, “Pattern-Oriented Software Architecture: Patterns for
Concurrent and Network Objects”, Wiley, 1999.

[23] Hung Phan, Minh-Tri Nguyen, “Technical Report on the Selection
of Visual Modelling Tools for TelOrb Application development”,
LMC, 2000.

